Publications by authors named "Sammak A"

Direct interactions between quantum particles naturally fall off with distance. However, future quantum computing architectures are likely to require interaction mechanisms between qubits across a range of length scales. In this work, we demonstrate a coherent interaction between two semiconductor spin qubits 250 μm apart using a superconducting resonator.

View Article and Find Full Text PDF

The coherent control of interacting spins in semiconductor quantum dots is of strong interest for quantum information processing and for studying quantum magnetism from the bottom up. Here we present a 2 × 4 germanium quantum dot array with full and controllable interactions between nearest-neighbour spins. As a demonstration of the level of control, we define four singlet-triplet qubits in this system and show two-axis single-qubit control of each qubit and SWAP-style two-qubit gates between all neighbouring qubit pairs, yielding average single-qubit gate fidelities of 99.

View Article and Find Full Text PDF

Waste and energy sectors have significant contributions to the greenhouse gas (GHG) emissions caused primarily by the population expansion. Waste-to-Energy (WtE) is introduced to address the issue raised by both sectors simultaneously through utilization of the potential energy stored in municipal solid waste (MSW) as well as offsetting GHG emissions. Limited research have been conducted in Egypt to assess the current situation of MSW management and associated methane emissions.

View Article and Find Full Text PDF

Qubits that can be efficiently controlled are essential for the development of scalable quantum hardware. Although resonant control is used to execute high-fidelity quantum gates, the scalability is challenged by the integration of high-frequency oscillating signals, qubit cross-talk, and heating. Here, we show that by engineering the hopping of spins between quantum dots with a site-dependent spin quantization axis, quantum control can be established with discrete signals.

View Article and Find Full Text PDF

Quantum links can interconnect qubit registers and are therefore essential in networked quantum computing. Semiconductor quantum dot qubits have seen significant progress in the high-fidelity operation of small qubit registers but establishing a compelling quantum link remains a challenge. Here, we show that a spin qubit can be shuttled through multiple quantum dots while preserving its quantum information.

View Article and Find Full Text PDF

Gravity in space can have a negative impact on the reproductive system. Given that the reproductive system is one of vitamin D's objectives, this study will use a simulated microgravity model to evaluate its impact on the rat reproductive system.Twenty-two male Wistar rats were allocated into four groups at random.

View Article and Find Full Text PDF

Electrically driven spin resonance is a powerful technique for controlling semiconductor spin qubits. However, it faces challenges in qubit addressability and off-resonance driving in larger systems. We demonstrate coherent bichromatic Rabi control of quantum dot hole spin qubits, offering a spatially selective approach for large qubit arrays.

View Article and Find Full Text PDF

Objective: Food environments are a major determinant of children's nutritional status. Scarce evidence on food environments exists in low- and middle-income countries (LMIC). This study aims to fill this gap by documenting the obesogenicity of food environments around schools in Greater Tunis, Tunisia - an LMIC of the Middle East and North Africa region with an ongoing nutrition transition and increasing rates of childhood obesity.

View Article and Find Full Text PDF

Background: The feasibility of sentinel lymph node biopsy (SLNB) after neoadjuvant chemotherapy (NACT) in initially node-positive patients is still controversial. We aim to evaluate the oncologic outcomes of SLNB after NACT and further compare the results between those who were initially node-negative and node-positive.

Methods: This is a retrospective cohort that included patients diagnosed with invasive breast cancer and had surgical management between January 2010 and December 2016.

View Article and Find Full Text PDF

The small footprint of semiconductor qubits is favorable for scalable quantum computing. However, their size also makes them sensitive to their local environment and variations in the gate structure. Currently, each device requires tailored gate voltages to confine a single charge per quantum dot, clearly challenging scalability.

View Article and Find Full Text PDF

The efficient control of a large number of qubits is one of the most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line-an approach that will become unsustainable when scaling to the required millions of qubits. Here, inspired by random-access architectures in classical electronics, we introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium.

View Article and Find Full Text PDF

Practical Quantum computing hinges on the ability to control large numbers of qubits with high fidelity. Quantum dots define a promising platform due to their compatibility with semiconductor manufacturing. Moreover, high-fidelity operations above 99.

View Article and Find Full Text PDF

The aim of this case report is to review and compare the clinical, radiologic, histopathologic, and immunohistochemical features, along with the treatment of a case of ghost cell odontogenic carcinoma. In addition, a report of the existing published literature with an emphasis on treatment will be described to provide information on this rare but aggressive tumor. The family of odontogenic ghost cell tumors comprises a spectrum of lesions characterized by odontogenic epithelium with ghost cell keratinization and calcifications.

View Article and Find Full Text PDF

The Hepatitis B virus (HBV) core protein is an attractive target for preventing capsid assembly and viral replication. Drug repurposing strategies have introduced several drugs targeting HBV core protein. This study used a fragment-based drug discovery (FBDD) approach to reconstruct a repurposed core protein inhibitor to some novel antiviral derivatives.

View Article and Find Full Text PDF

We report observations of transitions between excited states in the Jaynes-Cummings ladder of circuit quantum electrodynamics with electron spins (spin circuit QED). We show that unexplained features in recent experimental work correspond to such transitions and present an input-output framework that includes these effects. In new experiments, we first reproduce previous observations and then reveal both excited-state transitions and multiphoton transitions by increasing the probe power and using two-tone spectroscopy.

View Article and Find Full Text PDF

Highly uniform quantum systems are essential for the practical implementation of scalable quantum processors. While quantum dot spin qubits based on semiconductor technology are a promising platform for large-scale quantum computing, their small size makes them particularly sensitive to their local environment. Here, we present a method to electrically obtain a high degree of uniformity in the intrinsic potential landscape using hysteretic shifts of the gate voltage characteristics.

View Article and Find Full Text PDF

Charge noise in the host semiconductor degrades the performance of spin-qubits and poses an obstacle to control large quantum processors. However, it is challenging to engineer the heterogeneous material stack of gate-defined quantum dots to improve charge noise systematically. Here, we address the semiconductor-dielectric interface and the buried quantum well of a Si/SiGe heterostructure and show the connection between charge noise, measured locally in quantum dots, and global disorder in the host semiconductor, measured with macroscopic Hall bars.

View Article and Find Full Text PDF

A strained Ge quantum well, grown on a SiGe/Si virtual substrate and hosting two electrostatically defined hole spin qubits, is nondestructively investigated by synchrotron-based scanning X-ray diffraction microscopy to determine all its Bravais lattice parameters. This allows rendering the three-dimensional spatial dependence of the six strain tensor components with a lateral resolution of approximately 50 nm. Two different spatial scales governing the strain field fluctuations in proximity of the qubits are observed at <100 nm and >1 μm, respectively.

View Article and Find Full Text PDF

Electron spins in Si/SiGe quantum wells suffer from nearly degenerate conduction band valleys, which compete with the spin degree of freedom in the formation of qubits. Despite attempts to enhance the valley energy splitting deterministically, by engineering a sharp interface, valley splitting fluctuations remain a serious problem for qubit uniformity, needed to scale up to large quantum processors. Here, we elucidate and statistically predict the valley splitting by the holistic integration of 3D atomic-level properties, theory and transport.

View Article and Find Full Text PDF

Control of entanglement between qubits at distant quantum processors using a two-qubit gate is an essential function of a scalable, modular implementation of quantum computation. Among the many qubit platforms, spin qubits in silicon quantum dots are promising for large-scale integration along with their nanofabrication capability. However, linking distant silicon quantum processors is challenging as two-qubit gates in spin qubits typically utilize short-range exchange coupling, which is only effective between nearest-neighbor quantum dots.

View Article and Find Full Text PDF

Future quantum computers capable of solving relevant problems will require a large number of qubits that can be operated reliably. However, the requirements of having a large qubit count and operating with high fidelity are typically conflicting. Spins in semiconductor quantum dots show long-term promise but demonstrations so far use between one and four qubits and typically optimize the fidelity of either single- or two-qubit operations, or initialization and readout.

View Article and Find Full Text PDF

High-fidelity control of quantum bits is paramount for the reliable execution of quantum algorithms and for achieving fault tolerance-the ability to correct errors faster than they occur. The central requirement for fault tolerance is expressed in terms of an error threshold. Whereas the actual threshold depends on many details, a common target is the approximately 1% error threshold of the well-known surface code.

View Article and Find Full Text PDF

Fault-tolerant quantum computers that can solve hard problems rely on quantum error correction. One of the most promising error correction codes is the surface code, which requires universal gate fidelities exceeding an error correction threshold of 99 per cent. Among the many qubit platforms, only superconducting circuits, trapped ions and nitrogen-vacancy centres in diamond have delivered this requirement.

View Article and Find Full Text PDF