Sodium alginate (SA) was grafted to poly (acrylonitrile-co‑sodium acrylate-co-acrylic acid). The grafted copolymer was crosslinked with N. N, methylene bis acrylamide (MBA).
View Article and Find Full Text PDFIn this study, molecular beam epitaxial growth of strain-driven three-dimensional self-assembled Ge/GeSi islands on silicon-on-insulator (SOI) substrates, along with their optical and photodetection characteristics, have been demonstrated. The as-grown islands exhibit a bimodal size distribution, consisting of both Ge and GeSi alloy islands, and show significant photoluminescence (PL) emission at room temperature, specifically near optical communication wavelengths. Additionally, these samples were used to fabricate a Ge/GeSi islands/Si nanowire based phototransistor using a typical e-beam lithography process.
View Article and Find Full Text PDFα-Ketoglutaric acid-based supramolecular Zn(II) metallogels in ,'-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO) solvent (i.e., Zn-α-Glu-DMF and Zn-α-Glu-DMSO) were successfully achieved.
View Article and Find Full Text PDFWe explore the photodetection properties of a carbon nanofiber (CNF)-based p-CNF/n-Si heterojunction device in the 400-800 nm wavelength range and investigate the changes brought in by adsorption of CuNi (CN) nanoparticles on the CNFs. The nanoparticles and CN-CNF nanocomposites were synthesized by using chemical hydrothermal routes. The p-type semiconducting nature of the CNFs and nanocomposites was determined using X-ray photoelectron (XPS) and UV-vis spectroscopies.
View Article and Find Full Text PDFVinylsulfonic acid (VSA), acrylamide (AM) and N, N methylene bis acrylamide(MBA) were copolymerized by radical polymerization in the presence of gum ghatti (GG) and treated water hyacianth (WH) in water. Several composite copolymers were prepared by varying the i) AM: VSA molar ratios ii) wt% of GG and iii) wt% of treated WH based on a Box-Behnken Design(BBD) of a response surface methodology (RSM) model with three input variables and the batch adsorption capacity (mg/g) of 100 mg/L Cd (II) from water as response. The composite polymer was characterized by Fourier transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis(TGA), X- ray photo electron spectroscopy (XPS), compressive strength, pH reversibility, pH at point zero charge (pH), Brunauer-Emmett-Teller (BET) surface area and scanning electron microscopy (SEM).
View Article and Find Full Text PDFThe remarkable brightness and rapid scintillation observed in perovskite single crystals (SCs) become even more striking when they are operated at cryogenic temperatures. In this study, we present advancements in enhancing the scintillation properties of methylammonium lead bromide (MAPbBr) SCs by optimizing the synthesis process. We successfully synthesized millimeter-sized MAPbBr SCs with bright green luminescence under UV light.
View Article and Find Full Text PDFThe progressive inflammatory disease atherosclerosis promotes myocardial infarction, stroke, and heart attack. Anti-inflammatory drugs treat severe atherosclerosis. They are inadequate bioavailability and cause adverse effects at higher doses.
View Article and Find Full Text PDFMetal nanoparticles (NPs) can be employed to modify the emission level of a dye emitter by tailoring the spectral overlap of the optical gain and localized surface plasmon resonance (LSPR). In the case of plasmonic random lasers, tuning the spectral overlap by manipulating metal NPs changes the scattering properties of the system, which is crucial in random lasers (RLs). In order to overcome this drawback, the emitter gain spectrum across the LSPR is tuned by appropriately choosing various dye emitters.
View Article and Find Full Text PDFMultifunctional self-powered energy harvesting devices have attracted significant attention for wearable, portable, IoT and healthcare devices. In this study, we report transition metal dichalcogenide (TMDC) ternary alloy (MoWS)-based self-powered photosensitive vertical triboelectric nanogenerator (TENG) devices, where the ternary alloy functions both as a triboelectric layer and as a photoabsorbing material. The scalable synthesis of the highly crystalline MoWS ternary alloy can overcome the limitations of binary TMDCs (MoS, WS) by utilizing its superior optical characteristics, enabling this semiconductor-based TENG device to simultaneously exhibit photoelectric and triboelectric properties.
View Article and Find Full Text PDFNitrogen-doped carbon dots (NCDs), exhibiting strong yellow emission in aqueous solution and solid matrices, have been utilized for fabricating heterostructure white electroluminescence devices. These devices consist of nitrogen-doped carbon dots as an emissive layer sandwiched between an organic hole transport layer (PEDOT:PSS) and an array of rutile TiOnanorods, acting as an electron transport layer. Under an applied forward bias of 5 V, the device exhibits broadband electroluminescence covering the wavelength range of 390-900 nm, resulting in pure white light emission characteristics at room temperature.
View Article and Find Full Text PDFIn addition to the superior electrical and optoelectronic attributes, ultrathin two-dimensional transition metal dichalcogenides (TMDCs) have evoked appreciable attention for their piezoelectric properties. In this study, we report, the piezoelectric characteristics of large area, chemically exfoliated TMDCs and their heterostructures for the first time, as verified by piezoelectric force microscopy measurements. Piezoelectric output voltage response of the MoS-WSeheterostructure piezoelectric nanogenerator (PENG) is enhanced by ∼47.
View Article and Find Full Text PDFThis work reports an, one-step hydrothermal preparation procedure of a binder-free electrode growth of NiSeon nickel foam (NiSe/NF) with a rod-like structure. NiSeis an enveloped transition metal chalcogenides of formula MX(where 2 ≤≤ 8, M is a transition metal and X is chalcogen) of the nickel selenide family. The NiSe/NF electrode described here demonstrates an exceptional lifetime of 81% capacitance retention over 20000 cycles and a high specific capacitance of 473.
View Article and Find Full Text PDFTwo dimensional (2D) van der Waals heterostructures (vdWHs) have unique potential in facilitating the stacking of layers of different 2D materials for optoelectronic devices with superior characteristics. However, the fabrication of large area all-2D heterostructures is still challenging towards realizing practical devices at a reduced cost. In the present work, we have demonstrated a rapid yet simple, impurity-free and efficient sonication-assisted chemical exfoliation approach to synthesize hybrid vdWHs based on 2D molybdenum disulphide (MoS) and tungsten disulphide (WS), with high yield.
View Article and Find Full Text PDFACS Appl Bio Mater
December 2022
Bacterial invasion is a serious concern during the wound healing process. The colonization of bacteria is mainly responsible for the pH fluctuation at the wound site. Therefore, the fabrication of a proper wound dressing material with antibacterial activity and pH monitoring ability is necessary to acquire a fast healing process.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Transition-metal tellurides (TMTs) are promising materials for "post-graphene age" nanoelectronics and energy storage applications owing to their industry-standard compatibility, high electron mobility, large spin-orbit coupling (SOC), etc. However, tellurium (Te) having a larger ionic radius ( = 52) and broader d-bands endows TMTs with semimetallic nature, restricting their application in photonic and optoelectronic domains. In this work, we report the optical properties of the quantum-confined semiconducting phase of cobalt ditelluride (CoTe) for the first time, exhibiting excellent two-color band photoabsorption attributes covering the UV-visible and near-infrared regions.
View Article and Find Full Text PDFPhosphor-converted LEDs or pc-LEDs, as a solid-state lighting source, are attractive for next-generation display technologies because of their energy savings, and green environmentally friendly nature. Recently, white LEDs are being produced commercially by coating blue LED (440-470 nm) chips with various yellow-emitting phosphors. However, the LEDs produced by this technique often exhibit high correlated color temperature (CCT) and low color rendering index (CRI) values, due to sufficient red spectral components not being present, and thus aren't suitable for commercial grade white illumination.
View Article and Find Full Text PDFDiagnosing heavy metals poisoning in human beings is of paramount importance. In this work, we present the design of a biocompatible FeNiO hierarchical nanostructure-based sensor for ultraselective detection of arsenate (As(V)) ions in biological environments (e.g.
View Article and Find Full Text PDFThe concept of alloy engineering has emerged as a viable technique toward tuning the band gap as well as engineering the defect levels in two-dimensional transition-metal dichalcognides (TMDCs). The possibility of synthesizing these ultrathin TMDC materials through a chemical route has opened up realistic possibilities to fabricate hybrid multifunctional devices. By synthesizing nanosheets with different composites of MoSSe ( = 0 - 1) using simple chemical methods, we systematically investigate the photoresponse properties of three terminal hybrid devices by decorating large-area graphene with these nanosheets ( = 0, 0.
View Article and Find Full Text PDFColloidal synthesized cubic α-CsPbI perovskite nanocrystals having a smaller lattice constant ( = 6.2315 Å) compared to the standard structure, and nanoscale mapping of their surfaces are reported to achieve superior photovoltaic performance under 45-55% humidity conditions. Atomic scale transmission electron microscopic images have been utilized to probe the precise arrangement of Cs, Pb, and I atoms in a unit cell of α-CsPbI NCs, which is well supported by the VESTA structure.
View Article and Find Full Text PDFRecent progress in the synthesis of highly stable, eco-friendly, cost-effective transition-metal dichalcogenide (TMDC) quantum dots (QDs) with their broadband absorption spectra and wavelength selectivity features have led to their increasing use in broadband photodetectors. With the solution-based processing, we demonstrate a superlarge (∼0.75 mm), ultraviolet-visible (UV-vis) broadband (365-633 nm) phototransistor made of WS QDs-decorated chemical vapor deposited (CVD) graphene as the active channel with extraordinary stability and durability under ambient conditions (without any degradation of photocurrent until 4 months after fabrication).
View Article and Find Full Text PDFCenters for Disease Control and Prevention (CDC) warns the use of one-way valves or vents in face masks for potential threat of spreading COVID-19 through expelled respiratory droplets. Here, we have developed a nanoceutical cotton fabric duly sensitized with non-toxic zinc oxide nanomaterial for potential use as a membrane filter in the one-way valve for the ease of breathing without the threat of COVID-19 spreading. A detailed computational study revealed that zinc oxide nanoflowers (ZnO NFs) with almost two-dimensional petals trap SARS-CoV-2 spike proteins, responsible to attach to ACE-2 receptors in human lung epithelial cells.
View Article and Find Full Text PDFAttachment of microbial bodies including the corona virus on the surface of personal protective equipment (PPE) is found to be potential threat of spreading infection. Here, we report the development of a triboelectroceutical fabric (TECF) consisting of commonly available materials, namely, nylon and silicone rubber (SR), for the fabrication of protective gloves on the nitrile platform as model wearable PPE. A small triboelectric device (2 cm × 2 cm) consisting of SR and nylon on nitrile can generate more than 20 V transient or 41 μW output power, which is capable of charging a capacitor up to 65 V in only ∼50 s.
View Article and Find Full Text PDFWe report the superior broadband photodetection characteristics of few-layer phosphorene known as black phosphorus (BP) nanosheets integrated with silver nanoparticles (Ag NPs) using vertical heterojunctions on a Si platform. The exfoliation of BP nanosheets and preparation of an Ag NP:BP (Ag-BP) hybrid have been accomplished through environment-friendly and cost-effective chemical routes. The hybrid sample exhibits broadband light absorption with a strong plasmonic peak around ∼425 nm due to the localized surface plasmon resonance (LSPR) of Ag NPs of average size ∼6.
View Article and Find Full Text PDFPectin grafted polyacrylic copolymer hydrogels were made by free radical crosslink copolymerization of acrylic acid (AA) and acrylamide (AM) in an aqueous solution of pectin. N'N-methylene bis acrylamide (MBA) was used as a crosslinker. During the polymerization reaction the attapulgite (APG) filler was also incorporated in situ into the network of the copolymer gel.
View Article and Find Full Text PDF