Publications by authors named "Samit Chakrabarty"

Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs and their input-output profile elicited by pulses delivered to peripheral nerves.

View Article and Find Full Text PDF

Surface electromyography (sEMG) can provide multiplexed information about muscle performance. If current sEMG electrodes are stretchable, arrayed, and able to be used multiple times, they would offer adequate high-quality data for continuous monitoring. The lack of these properties delays the widespread use of sEMG in clinics and in everyday life.

View Article and Find Full Text PDF

Unilateral strength and skill training increase strength and performance in the contralateral untrained limb, a phenomenon known as cross-education. Recent evidence suggests that similar neural mechanisms might be responsible for the increase in strength and skill observed in the untrained hand after unimanual training. The aims of this study were to: investigate whether a single session of unimanual strength and skill (force-tracking) training increased strength and skill in the opposite hand; measure ipsilateral (untrained) brain ( transcranial magnetic stimulation, TMS) and spinal ( the monosynaptic reflex) changes in excitability occurring after training; measure ipsilateral (untrained) pathway-specific changes in neural excitability ( TMS-conditioning of the monosynaptic reflex) occurring after training.

View Article and Find Full Text PDF

Highly varying patterns of electrostimulation (Dynamic Stimulation, DS) delivered to the dorsal cord through an epidural array with 18 independent electrodes transiently facilitate corticospinal motor responses, even after spinal injury. To partly unravel how corticospinal input are affected by DS, we introduced a corticospinal platform that allows selective cortical stimulation during the multisite acquisition of cord dorsum potentials (CDPs) and the simultaneous supply of DS. Firstly, the epidural interface was validated by the acquisition of the classical multisite distribution of CDPs on the dorsal cord and their input-output profile elicited by pulses delivered to peripheral nerves.

View Article and Find Full Text PDF

To diagnose mobility impairments and select appropriate physiotherapy, gait assessment studies are often recommended. These studies are usually conducted in confined clinical settings, which may feel foreign to a subject and affect their motivation, coordination, and overall mobility. Conducting gait studies in unconstrained natural settings instead, such as the subject's Activities of Daily Life (ADL), could provide a more accurate assessment.

View Article and Find Full Text PDF

Although we can measure muscle activity and analyze their activation patterns, we understand little about how individual muscles affect the joint torque generated. It is known that they are controlled by circuits in the spinal cord, a system much less well-understood than the cortex. Knowing the contribution of the muscles toward a joint torque would improve our understanding of human limb control.

View Article and Find Full Text PDF

Mice with transgenic expression of human SOD1 are a widely used model of ALS, with a caudal-rostral progression of motor impairment. Previous studies have quantified the progression of motoneuron (MN) degeneration based on size, even though alpha (α-) and gamma (γ-) MNs overlap in size. Therefore, using molecular markers and synaptic inputs, we quantified the survival of α-MNs and γ-MNs at the lumbar and cervical spinal segments of 3- and 4-month SOD1 mice, to investigate whether there is a caudal-rostral progression of MN death.

View Article and Find Full Text PDF

The influence of proprioceptive feedback on muscle activity during isometric tasks is the subject of conflicting studies. We performed an isometric knee extension task experiment based on two common clinical tests for mobility and flexibility. The task was carried out at four preset angles of the knee, and we recorded from five muscles for two different hip positions.

View Article and Find Full Text PDF

The motor unit comprises a variable number of muscle fibres that connect through myelinated nerve fibres to a motoneuron (MN), the central drivers of activity. At the simplest level of organisation there exist phenotypically distinct MNs that activate corresponding muscle fibre types, but within an individual motor pool there typically exists a mixed population of fast and slow firing MNs, innervating groups of Type II and Type I fibres, respectively. Characterising the heterogeneity across multiple levels of motor unit organisation is critical to understanding changes that occur in response to physiological and pathological perturbations.

View Article and Find Full Text PDF

The amplitude of motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the motor cortex is influenced by multiple factors. TMS delivery is accompanied by an abrupt clicking noise which can induce a startle response. This study investigated how masking/attenuating the sound produced by the TMS system discharging influences MEP amplitudes.

View Article and Find Full Text PDF

Mammalian motor systems adapt to the demands of their environment. For example, muscle fibre types change in response to increased load or endurance demands. However, for adaptations to be effective, motoneurons must adapt such that their properties match those of the innervated muscle fibres.

View Article and Find Full Text PDF

A subthreshold pulse of transcranial magnetic stimulation (TMS) on the motor cortex can modulate the amplitude of the monosynaptic reflex (H-reflex) elicited in the flexor carpi radialis (FCR) muscle, a method known as TMS-conditioning of the H-reflex. The purpose of this study was to establish the intersession reliability of this method over the course of three sessions. Eleven healthy participants received either peripheral nerve stimulation (PNS), TMS or a combination of the two.

View Article and Find Full Text PDF

Chronic wound infections represent a significant burden to healthcare providers globally. Often, chronic wound healing is impeded by the presence of infection within the wound or wound bed. This can result in an increased healing time, healthcare cost and poor patient outcomes.

View Article and Find Full Text PDF

In order to successfully perform motor tasks such as locomotion, the central nervous system must coordinate contractions of antagonistic and synergistic muscles across multiple joints. This coordination is largely dependent upon the function of proprioceptive afferents (PAs), which make monosynaptic connections with homonymous motoneurons. Homonymous pathways have been well studied in both health and disease but their collateral fibers projecting to heteronymous, synergistic muscles receive relatively less attention.

View Article and Find Full Text PDF

The formation of mature spinal motor circuits is dependent on both activity-dependent and independent mechanisms during postnatal development. During this time, reorganization and refinement of spinal sensorimotor circuits occurs as supraspinal projections are integrated. However, specific features of postnatal spinal circuit development remain poorly understood.

View Article and Find Full Text PDF

This review presents the mechanistic underpinnings of corticospinal tract (CST) development, derived from animal models, and applies what has been learned to inform neural activity-based strategies for CST repair. We first discuss that, in normal development, early bilateral CST projections are later refined into a dense crossed CST projection, with maintenance of sparse ipsilateral projections. Using a novel mouse genetic model, we show that promoting the ipsilateral CST projection produces mirror movements, common in hemiplegic cerebral palsy (CP), suggesting that ipsilateral CST projections become maladaptive when they become abnormally dense and strong.

View Article and Find Full Text PDF

The corticospinal tract (CST) is important for limb control. In humans, it begins developing prenatally but CST connections do not have a mature pattern until about 6 months of age and its capacity to evoke muscle contraction does not mature until mid-adolescence. An initially bilateral projection is subsequently refined, so that most ipsilateral CST connections are eliminated.

View Article and Find Full Text PDF

The corticospinal tract (CST) has dense contralateral and sparse ipsilateral spinal cord projections that converge with proprioceptive afferents on common spinal targets. Previous studies in adult rats indicate that the loss of dense contralateral spinal CST connections after unilateral pyramidal tract section (PTx), which models CST loss after stroke or spinal cord injury, leads to outgrowth from the spared side into the affected, ipsilateral, spinal cord. The reaction of proprioceptive afferents after this CST injury, however, is not known.

View Article and Find Full Text PDF

This study investigated the requirements for restoring motor function after corticospinal (CS) system damage during early postnatal development. Activity-dependent competition between the CS tracts (CSTs) of the two hemispheres is imperative for normal development. Blocking primary motor cortex (M1) activity unilaterally during a critical period [postnatal week 5 (PW5) to PW7] produces permanent contralateral motor skill impairments, loss of M1 motor map, aberrant CS terminations, and decreases in CST presynaptic sites and spinal cholinergic interneuron numbers.

View Article and Find Full Text PDF

Models employing peripheral nerve to bypass spinal cord injury (SCI), although highly promising, may benefit from improved nerve regeneration and motor bridge connectivity. Recent studies have demonstrated that neuronal growth factor-induced enhancement of endogenous neurorestoration may improve neuronal connectivity after severe neurologic injury, particularly if delivered intraparenchymally with zero-order kinetics. We sought to investigate the effect of convection-enhanced delivery of brain-derived neurotrophic factor (BDNF), a neuronal growth factor, on the connectivity of a peripheral motor-nerve bridge in a rodent model using electrophysiology and immunohistochemistry (IHC).

View Article and Find Full Text PDF

The corticospinal tract (CST) is the principal motor control pathway for skilled movements. It has a protracted postnatal development, creating a protracted period of vulnerability to perinatal brain and spinal cord injury. Research has shown that the motor signs in cerebral palsy (CP) reflect the loss of CST connections as well as development of abnormal motor systems connections, especially between the developing CST and spinal motor circuits.

View Article and Find Full Text PDF

In maturity, skilled movements depend on coordination of control signals by descending pathways, such as the corticospinal tract (CST), and proprioceptive afferents (PAs). An important locus for this coordination is the spinal cord intermediate zone. Convergence of CST and PA terminations onto common regions leads to interactions that may underlie afferent gating and modulation of descending control signals during movements.

View Article and Find Full Text PDF

Proprioceptive afferent (PA) information is integrated with signals from descending pathways, including the corticospinal tract (CST), by spinal interneurons in the dorsal horn and intermediate zone for controlling movements. PA spinal projections, and the reflexes that they evoke, develop prenatally. The CST projects to the spinal cord postnatally, and its connections are subsequently refined.

View Article and Find Full Text PDF

Development of skilled movements and the corticospinal tract (CST) begin prenatally and continue postnatally. Because the CST is required for skilled movements in maturity, it is accepted that motor skills cannot occur until the CST develops a mature organization. We recently showed that the CST plays an essential role in postnatal development of interneurons comprising the spinal circuits it engages.

View Article and Find Full Text PDF

Corticospinal tract (CST) connections to spinal interneurons are conserved across species. We identified spinal interneuronal populations targeted by the CST in the cervical enlargement of the cat during development. We focused on the periods before and after laminar refinement of the CST terminations, between weeks 5 and 7.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: