Removal of pharmaceutical ingredients such as tetracycline from aqueous solution has a great importance. The aim of the current study was to investigate the degradation of tetracycline antibiotic in the presence of a triode semiconductor oxide as well as modeling of the photocatalytic degradation process in order to determine optimal condition Zinc stannate nanoflower (ZnSnO) was synthesized by hydrothermal process and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM) techniques. Response surface methodology (RSM) was used to model and optimize four key independent variables, including photocatalyst dosage, initial concentration of tetracycline antibiotic (TC) as model pollutant, pH and reaction time of photocatalytic degradation.
View Article and Find Full Text PDFOxygen-depleted hypoxic regions in the tumour are generally resistant to therapies. Although nanocarriers have been used to deliver drugs, the targeting ratios have been very low. Here, we show that the magneto-aerotactic migration behaviour of magnetotactic bacteria, Magnetococcus marinus strain MC-1 (ref.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
November 2016
The aim of this study is to improve hydrocolloid stability and siRNA transfection ability of a reduced graphene oxide (rGO) based nano-carrier using a phospholipid-based amphiphilic polymer (PL-PEG) and cell penetrating peptide (CPPs). The dual functionalized nano-carrier is comprehensively characterized for its chemical structure, size, surface charge and morphology as well as thermal stability. The nano-carrier cytocompatibility, siRNA condensation ability both in the presence and absence of enzyme, endosomal buffering capacity, cellular uptake and intracellular localization are also assessed.
View Article and Find Full Text PDFThe targeted and effective delivery of therapeutic agents remains an unmet goal in the field of controlled release systems. Magnetococcus marinus MC-1 magnetotactic bacteria (MTB) are investigated as potential therapeutic carriers. By combining directional magnetotaxis-microaerophilic control of these self-propelled agents, a larger amount of therapeutics can be delivered surpassing the diffusion limits of large drug molecules toward hard-to-treat hypoxic regions in solid tumors.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2012
We showed that magnetotactic bacteria (MTB) have great potentials to be used as microcarriers for targeted delivery of therapeutic agents. Indeed, magnetotaxis inherent in MTB can be exploited to direct them towards a tumor while being propelled by their own flagellated molecular motors. Nonetheless, although the thrust propelling force above 4 pN of the MC-1 MTB showed to be superior compared to other technologies for displacement in the microvasculature, MTB becomes much less efficient when travelling in larger blood vessels due to higher blood flow.
View Article and Find Full Text PDF