The design of efficient bacterial inactivation treatment in wastewater is challenging due to its numerous parameters and the complex composition of wastewater. Although solar photochemical processes (PCPs) provide energy-saving benefits, a balance must be maintained between bacterial inactivation efficiency and experimental costs. Predictive decision tools for bacterial inactivation under various conditions would significantly contribute to optimizing PCP design resources.
View Article and Find Full Text PDFAgricultural irrigation using reclaimed urban wastewater (RWW) represents a sustainable practice to meet the ever-increasing water stress in modern societies. However, the occurrence of residual antibiotics and antibiotic resistant bacteria (ARB) in RWW is an important human health concern. This study applied for the first time a novel Simple-Death dose-response model to the field data of Escherichia coli and Pseudomonas spp.
View Article and Find Full Text PDFThe safe reuse of reclaimed water for agricultural irrigation has been considered as an alternative, feasible and sustainable option to address water scarcity. This work aims to validate the capability of the solar water photochemical process based on the synergistic effect between peroxymonosulfate (PMS) and natural solar radiation for actual urban wastewater (UWW) purification at a pilot plant scale using a solar Compound Parabolic Collector photo-reactor. The PMS/Solar process performance was assessed by monitoring simultaneously the inactivation of naturally occurring bacteria (Escherichia coli, Total coliforms, Enterococcus spp.
View Article and Find Full Text PDFThis study explores the capability of Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs) for the simultaneous disinfection and decontamination of urban wastewater. Sulfate and hydroxyl radicals in solution were generated activating peroxymonosulfate (PMS) under UV-C irradiation at pilot plant scale. The efficiency of the process was assessed toward the removal of three CECs (Trimethoprim (TMP), Sulfamethoxazole (SMX), and Diclofenac (DCF)) and three bacteria (, spp.
View Article and Find Full Text PDFIn this study, a full cycle of agricultural reuse of agro-food wastewater (synthetic fresh-cut wastewater, SFCWW) at pilot plant scale has been investigated. Treated SFCWW by ozonation and two solar processes (HO/solar, Fe-EDDHA/HO/solar) was used to irrigate two raw-eaten crops (lettuce and radish) grown in peat. Two foodborne pathogens (E.
View Article and Find Full Text PDFSolar processes (sunlight/HO solar photo-Fenton with EDDS at neutral pH) were compared to a consolidated technology (ozonation) in the inactivation of target bacteria (E. coli, Salmonella spp. and Enterococcus spp.
View Article and Find Full Text PDFThe World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators.
View Article and Find Full Text PDFIn this research, the capability of ozonation and peroxone treatment for the simultaneous disinfection and decontamination of wash water from the fresh-cut industry has been investigated at pilot plant scale (10 L). The removal efficiency of six organic microcontaminants (OMCs) (four of them priority substances) and the inactivation of two foodborne pathogens (Escherichia coli O157:H7 and Salmonella enteritidis) in synthetic fresh-cut wastewater (SFCWW) has been assessed. Ozonation and peroxone (O with 20 mgL of HO) process has been investigated under several operational conditions: natural SFCWW pH (6.
View Article and Find Full Text PDFEnviron Sci Technol
August 2019
In this study, disinfection of urban wastewater (UWW) with two solar processes (HO -20 mg/L and photo-Fenton 10 mg/L-Fe/20 mg/L-HO at natural water pH) at pilot scale using a 60 L compound parabolic collector reactor for irrigation of two raw-eaten vegetables (lettuce and radish) has been investigated. Several microbial targets (total coliforms, , spp., and spp.
View Article and Find Full Text PDFPhoto-driven advanced oxidation process (AOP) with peracetic acid (PAA) has been poorly investigated in water and wastewater treatment so far. In the present work its possible use as tertiary treatment of urban wastewater to effectively minimize the release into the environment of contaminants of emerging concern (CECs) and antibiotic-resistant bacteria was investigated. Different initial PAA concentrations, two light sources (sunlight and UV-C) and two different water matrices (groundwater (GW) and wastewater (WW)) were studied.
View Article and Find Full Text PDF