Proteolysis of fibrin matrices by endothelial cells plays essential roles in the migratory and morphogenic differentiation processes underlying angiogenesis. Using an in vitro fibrinolysis model consisting of human umbilical vein endothelial cells (HUVECs) embedded in a three dimensional fibrin matrix, we show that VEGF, an angiogenic cytokine that plays a crucial role in the onset of angiogenesis, is a potent activator of HUVEC-mediated fibrinolysis. This VEGF-dependent fibrin degradation was completely abrogated by inhibitors of either the plasminogen activator/plasmin or matrix metalloproteinases (MMP) proteolytic systems, suggesting the involvement of both classes of proteases in fibrin degradation.
View Article and Find Full Text PDFThe vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) receptors play essential and complementary roles in angiogenesis and combined inhibition of these receptors has been shown to result in potent antitumor activity in vivo. In this study, we report that ellagic acid (EA), a natural polyphenol found in fruits and nuts, inhibits VEGF-induced phosphorylation of VEGFR-2 in endothelial cell (EC) as well as PDGF-induced phosphorylation of PDGFR in smooth muscle cells, leading to the inhibition of downstream signaling triggered by these receptors. EA also specifically inhibited VEGF-induced migration of ECs as well as their differentiation into capillary-like tubular structures and abolished PDGF-dependent smooth muscle cell migration.
View Article and Find Full Text PDF