The increasing complexity of diagnostic imaging often leads to misinterpretations and diagnostic errors, particularly in critical conditions such as pneumothorax. This study addresses the pressing need for improved diagnostic accuracy in CT scans by developing an intelligent model that leverages radiomics features and machine learning techniques. By enhancing the detection of pneumothorax, this research aims to mitigate diagnostic errors and accelerate the process of image interpretation, ultimately improving patient outcomes.
View Article and Find Full Text PDF