Publications by authors named "Samira Boudebbouze"

Excess chronic contact between microbial motifs and intestinal immune cells is known to trigger a low-grade inflammation involved in many pathologies such as obesity and diabetes. The important skewing of intestinal adaptive immunity in the context of diet-induced obesity (DIO) is well described, but how dendritic cells (DCs) participate in these changes is still poorly documented. To address this question, we challenged transgenic mice with enhanced DC life span and immunogenicity (DC mice) with a high-fat diet.

View Article and Find Full Text PDF

The role of the gut microbiota in health and disease is well recognized and the microbiota dysbiosis observed in many chronic diseases became a new therapeutic target. The challenge is to get a better insight into the functionality of commensal bacteria and to use this knowledge to select live biotherapeutics as new preventive or therapeutic products. In this study, we set up a screening approach to evaluate the functional capacities of a set of 21 strains isolated from the gut microbiota of neonates and adults.

View Article and Find Full Text PDF

Alterations in the gut microbiota composition and diversity seem to play a role in the development of chronic diseases, including inflammatory bowel disease (IBD), leading to gut barrier disruption and induction of proinflammatory immune responses. This opens the door for the use of novel health-promoting bacteria. We selected five strains isolated from human adult and neonates gut microbiota.

View Article and Find Full Text PDF

Background: Management of blood cholesterol is a major focus of efforts to prevent cardiovascular diseases. The objective of this study was to investigate how the gut microbiota affects host cholesterol homeostasis at the organism scale.

Results: We depleted the intestinal microbiota of hypercholesterolemic female Apoe mice using broad-spectrum antibiotics.

View Article and Find Full Text PDF

Background: In eukaryotes, the serpins constitute a wide family of protease inhibitors regulating many physiological pathways. Many reports stressed the key role of serpins in several human physiopathologies including mainly the inflammatory bowel diseases. In this context, eukaryotic serpins were largely studied and their use to limit inflammation was reported.

View Article and Find Full Text PDF

Background: The L-arabinose isomerase is an intracellular enzyme which converts L-arabinose into L-ribulose in living systems and D-galactose into D-tagatose in industrial processes and at industrial scales. D-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The D-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH.

View Article and Find Full Text PDF

Phytases catalyze the hydrolysis of phytic acid in a stepwise manner to lower inositol phosphates, myo-inositol (having important role in metabolism and signal transduction pathways), and inorganic phosphate. These enzymes have been widely used in animal feed in order to improve phosphorus nutrition and to decrease pollution in animal waste. Compared to previously described phytases, the phytase (PhyL) from Bacillus licheniformis ATCC 14580 has attractive biochemical properties which can increase the profitability of several biotechnological procedures (animal nutrition, humain health…etc).

View Article and Find Full Text PDF

"Candidatus Arthromitus" sp. strain SFB-mouse-NL (SFB, segmented filamentous bacteria) is a commensal bacterium necessary for inducing the postnatal maturation of homeostatic innate and adaptive immune responses in the mouse gut. Here, we report the genome sequence of this bacterium, which sets it apart from earlier sequenced mouse SFB isolates.

View Article and Find Full Text PDF

Lactobacillus delbrueckii subsp. lactis CNRZ327 is a dairy bacterium with anti-inflammatory properties both in vitro and in vivo. Here, we report the genome sequence of this bacterium, which appears to contain no less than 215 insertion sequence (IS) elements, an exceptionally high number regarding the small genome size of the strain.

View Article and Find Full Text PDF

Background: Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production.

View Article and Find Full Text PDF

The phyL gene encoding phytase from the industrial strain Bacillus licheniformis ATCC 14580 (PhyL) was cloned, sequenced, and overexpressed in Escherichia coli. Biochemical characterization demonstrated that the recombinant enzyme has an apparent molecular weight of nearly 42 kDa. Interestingly, this enzyme was optimally active at 70-75 °C and pH 6.

View Article and Find Full Text PDF

Silver nanoparticles capped with nine different sulphonated calix[n]arenes were tested for their anti-bacterial effects against B. subtilis and E. coli at an apparent concentration of 100 nM in calix[n]arene.

View Article and Find Full Text PDF

Complex microbial ecosystems are increasingly studied through the use of metagenomics approaches. Overwhelming amounts of DNA sequence data are generated to describe the ecosystems, and allow to search for correlations between gene occurrence and clinical (e.g.

View Article and Find Full Text PDF

The Serine Protease Inhibitors (Serpins) have been a focus of research by biomedical industries due to their critical role in human health. The use of serpin in the treatment of many diseases was widely investigated through the identification of new genes encoding these proteins in all kingdoms of life. The characterization of these genes revealed that they encoded proteins having low sequence homologies.

View Article and Find Full Text PDF

The gene encoding the β-galactosidase from the dairy Lactococcus lactis IL1403 strain was cloned, sequenced and overexpressed in Escherichia coli. The purified enzyme has a tetrameric arrangement composed of four identical 120 kDa subunits. Biochemical characterization showed that it is optimally active within a wide range of temperatures from 15 to 55 °C and of pH from 6.

View Article and Find Full Text PDF

Lactococcus lactis, one of the most commonly used dairy starters, is often subjected to oxidative stress in cheese manufacturing. A comparative proteomic analysis was performed to identify the molecular modifications responsible for the robustness of three spontaneous H(2)O(2)-resistant (SpOx) strains. In the parental strain, glyceraldehyde-3-phosphate deshydrogenase (GAPDH) activity is ensured by GapB and the second GAPDH GapA is not produced in standard growth conditions.

View Article and Find Full Text PDF

Background: L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased.

View Article and Find Full Text PDF

L-Arabinose isomerase stability is a crucial criterion for the industrial application of this biocatalyst. Noria and NoriaPG are capable of increasing the L-arabinose isomerase stability not only at high temperatures but also at low pH. Such results highlight, for the first time, the use of the Noria series of molecules for protein stabilization and activation.

View Article and Find Full Text PDF

D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost.

View Article and Find Full Text PDF

The araA gene encoding an L-arabinose isomerase (L-AI) from the psychrotrophic and food grade Lactobacillus sakei 23K was cloned, sequenced and over-expressed in Escherichia coli. The recombinant enzyme has an apparent molecular weight of nearly 220 kDa, suggesting it is a tetramer of four 54 kDa monomers. The enzyme is distinguishable from previously reported L-AIs by its high activity and stability at temperatures from 4 to 40 degrees C, and pH from 3 to 8, and by its low metal requirement of only 0.

View Article and Find Full Text PDF

The LacZ gene encoding beta-galactosidase from Lactobacillus delbrueckii subsp. bulgaricus ATCC 11842 (L. bulgaricus) was cloned, sequenced and expressed in Escherichia coli, followed by purification and characterization of the protein.

View Article and Find Full Text PDF

Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) genome sequence analysis revealed the presence of two genes that encode histone-like HU proteins (hlbA and hlbB) showing extensive similarity to other bacterial homologues.

View Article and Find Full Text PDF

Streptococcus thermophilus is one of the most widely used lactic acid bacteria in the dairy industry, in particular in yoghurt manufacture, where it is associated with Lactobacillus delbrueckii subsp. bulgaricus. This bacterial association, known as a proto-cooperation, is poorly documented at the molecular and regulatory levels.

View Article and Find Full Text PDF

Streptococcus thermophilus is a thermophilic lactic acid bacterium widely used as starter in the manufacture of dairy products in particular in yoghurt manufacture in combination with Lactobacillus delbrueckii ssp. bulgaricus. However, in spite of its massive use, the physiological state of S.

View Article and Find Full Text PDF

Lactic acid bacteria (LAB) gradually acidify their environment through the conversion of pyruvate to lactate, an essential process to regenerate NAD(+) used during glycolysis. A clear demonstration of acidification can be found in yogurt, the product of milk fermentation by the LAB Lactobacillus delbrueckii ssp. bulgaricus (L.

View Article and Find Full Text PDF