Publications by authors named "Samira Ait El Mkadem"

Mitochondrial diseases (MD) are rare disorders caused by deficiency of the mitochondrial respiratory chain, which provides energy in each cell. They are characterized by a high clinical and genetic heterogeneity and in most patients, the responsible gene is unknown. Diagnosis is based on the identification of the causative gene that allows genetic counseling, prenatal diagnosis, understanding of pathological mechanisms, and personalized therapeutic approaches.

View Article and Find Full Text PDF

The genetic causes of Leigh syndrome are heterogeneous, with a poor genotype-phenotype correlation. To date, more than 50 nuclear genes cause nuclear gene-encoded Leigh syndrome. NDUFS6 encodes a 13 kiloDaltons subunit, which is part of the peripheral arm of complex I and is localized in the iron-sulfur fraction.

View Article and Find Full Text PDF

Background: Since the advent of next generation sequencing (NGS), several studies have tried to evaluate the relevance of targeted gene panel sequencing and whole exome sequencing for molecular diagnosis of mitochondrial diseases. The comparison between these different strategies is extremely difficult. A recent study analysed a cohort of patients affected by a mitochondrial disease using a NGS approach based on a targeted gene panel including 132 genes.

View Article and Find Full Text PDF

Wolfram syndrome (WS) is a progressive neurodegenerative disease characterized by early-onset optic atrophy and diabetes mellitus, which can be associated with more extensive central nervous system and endocrine complications. The majority of patients harbour pathogenic WFS1 mutations, but recessive mutations in a second gene, CISD2, have been described in a small number of families with Wolfram syndrome type 2 (WFS2). The defining diagnostic criteria for WFS2 also consist of optic atrophy and diabetes mellitus, but unlike WFS1, this phenotypic subgroup has been associated with peptic ulcer disease and an increased bleeding tendency.

View Article and Find Full Text PDF

MDH2 encodes mitochondrial malate dehydrogenase (MDH), which is essential for the conversion of malate to oxaloacetate as part of the proper functioning of the Krebs cycle. We report bi-allelic pathogenic mutations in MDH2 in three unrelated subjects presenting with early-onset generalized hypotonia, psychomotor delay, refractory epilepsy, and elevated lactate in the blood and cerebrospinal fluid. Functional studies in fibroblasts from affected subjects showed both an apparently complete loss of MDH2 levels and MDH2 enzymatic activity close to null.

View Article and Find Full Text PDF

An 11-year-old boy with psychomotor delay, exercise intolerance, ptosis and growth delay had a muscle biopsy showing typical mitochondrial alterations (60% of ragged-red fibers and 90% of cytochrome-c oxidase-deficient fibers). Next-generation sequencing revealed a novel heteroplasmic mutation (m.15958A>T) in the MTTP gene that encodes tRNA.

View Article and Find Full Text PDF

Background: Coenzyme Q10 (CoQ10 or ubiquinone) deficiency can be due either to mutations in genes involved in CoQ10 biosynthesis pathway, or to mutations in genes unrelated to CoQ10 biosynthesis. CoQ10 defect is the only oxidative phosphorylation disorder that can be clinically improved after oral CoQ10 supplementation. Thus, early diagnosis, first evoked by mitochondrial respiratory chain (MRC) spectrophotometric analysis, then confirmed by direct measurement of CoQ10 levels, is of critical importance to prevent irreversible damage in organs such as the kidney and the central nervous system.

View Article and Find Full Text PDF

Introduction: Insulin gene VNTR was associated with polycystic ovary syndrome (PCOS) in some studies but not in others. This couldb be due to the heterogeneity of the definition of PCOS and/or the use of inappropriate gene mapping strategies.

Material And Methods: In this investigation, the association of VNTR with PCOS was explored in a population of women from Central Europe (377 cases and 105 controls) in whom PCOS was diagnosed according to Rotterdam criteria.

View Article and Find Full Text PDF

Mutations in the CHCHD10 gene have been recently identified in a large family with a complex phenotype variably associating frontotemporal dementia (FTD) with amyotrophic lateral sclerosis (ALS), cerebellar ataxia, myopathy, and hearing impairment. CHCHD10 encodes a protein located in the mitochondrial intermembrane space and is likely involved in mitochondrial genome stability and maintenance of cristae junctions. However, the exact contribution of CHCHD10 in FTD and ALS diseases spectrum remains unknown.

View Article and Find Full Text PDF

Mitochondrial DNA instability disorders are responsible for a large clinical spectrum, among which amyotrophic lateral sclerosis-like symptoms and frontotemporal dementia are extremely rare. We report a large family with a late-onset phenotype including motor neuron disease, cognitive decline resembling frontotemporal dementia, cerebellar ataxia and myopathy. In all patients, muscle biopsy showed ragged-red and cytochrome c oxidase-negative fibres with combined respiratory chain deficiency and abnormal assembly of complex V.

View Article and Find Full Text PDF

Polymerase gamma (POLG) is the gene most commonly involved in mitochondrial disorders with mitochondrial DNA instability and causes a wide range of diseases with recessive or dominant transmission. More than 170 mutations have been reported. Most of them are missense mutations, although nonsense mutations, splice-site mutations, small deletions and insertions have also been identified.

View Article and Find Full Text PDF

We report two children, born from consanguineous parents, who presented with early-onset refractory epilepsy associated with psychomotor delay, failure to thrive, blindness and deafness. Polarographic and spectrophotometric analyses in fibroblasts and liver revealed a respiratory chain (RC) dysfunction. Surprisingly, we identified a homozygous nonsense mutation in the GM3 synthase gene by using exome sequencing.

View Article and Find Full Text PDF

Objective: Wolfram syndrome (WS) is a rare neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and optic atrophy. Our aim was to describe the nature and the frequency of the neurologic manifestations, which had been poorly studied until now.

Methods: We performed a detailed clinical study with genotype-phenotype correlation in a series of 59 patients with WS.

View Article and Find Full Text PDF

To assess the role of the insulin receptor gene in polycystic ovary syndrome (PCOS) we performed a case-control study in a female population (n=226) from Central Europe by examining the genetic associations of single nucleotide polymorphisms (rs8107575, rs2245648, rs2245649, rs2963, rs2245655, and rs2962) and inferred haplotypes around exon 9 of this gene. The ancestral T allele of single nucleotide polymorphism rs2963 or the corresponding haplotype (GGTC-C) showed association with PCOS with odds ratio 2.99, 95% confidence interval 1.

View Article and Find Full Text PDF