Hsp90 contains two Nucleotide Binding Sites (NBS): one each in its N-terminal domain (NTD) and C-terminal domain (CTD), respectively. Previously we used computational techniques to locate a nucleotide-binding site in the CTD. Nucleotide binding at this site stabilized the structurally labile region within this domain, thus providing a rationale for increased resistance to thermal denaturation and proteolysis.
View Article and Find Full Text PDFHsp90 contains two distinct Nucleotide Binding Sites (NBS), in its N-terminal domain (NTD) and C-terminal domain (CTD), respectively. The NTD site belongs to the GHKL super-family of ATPases and has been the subject of extensive characterization. However, a structure of the nucleotide-bound form of CTD is still unavailable.
View Article and Find Full Text PDFThe Hsp90 family of proteins is an important component of the cellular response to elevated temperatures, environmental or physiological stress and nuclear receptor signalling. The primary object of this work is the 80-kDa heat shock protein, a member of the Hsp90 family, from the model filamentous fungus Neurospora crassa, (henceforth referred to as Hsp80Nc). In contrast to more extensively characterized members of the same family, (e.
View Article and Find Full Text PDFAbstract Combinatorial library screening offers a rapid process for identifying potential therapies to toxins. Hinge peptide libraries, which rely on conformational diversity rather than traditional molecular diversity, reduce the need for huge numbers of syntheses and screening steps and greatly expedite the discovery process of active molecules. Hinge peptide libraries having the structures: Acetyl-X1-X2-hinge-X3-X4-NH2 (capped) and X1-hinge-X2-X3 (uncapped), where X1 through X4 are near-equimolar mixtures of twelve L-amino acids and hinge = 4-aminobutyric acid, were screened for inhibitory activity in bioassays for botulinum neurotoxins A and B (BoNT/A, BoNT/B) and saxitoxin.
View Article and Find Full Text PDF