Publications by authors named "Samir Ranjan Panda"

Article Synopsis
  • Alzheimer's disease (AD) is a progressive neurodegenerative condition that leads to significant cognitive decline and motor dysfunction due to the loss of cholinergic neurons, with current medications only providing temporary relief of symptoms.
  • Novel compounds based on rivastigmine (such as 3q and 6e) were developed and shown to effectively inhibit key enzymes involved in AD, exhibit antioxidant properties, and prevent the aggregation of tau and Aβ proteins.
  • These compounds also reduced inflammation in brain cells and restored memory function in animal models, showing increased expression of neuroprotection markers, indicating their potential for treating AD more effectively than existing medications.
View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent cause of dementia and is characterized by low levels of acetyl and butyrylcholine, increased oxidative stress, inflammation, accumulation of metals, and aggregations of Aβ and tau proteins. Current treatments for AD provide only symptomatic relief without impacting the pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multitarget molecules for AD, through extensive medicinal chemistry efforts, we have developed , harboring the key functional groups to provide not only symptomatic relief but also targeting oxidative stress, able to chelate iron, inhibiting NLRP3, and Aβ aggregation in various AD models.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aβ and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on were caried out to improve its multifunctional properties.

View Article and Find Full Text PDF

Parkinson's disease (PD) is the second most common neurodegenerative condition, primarily affecting dopaminergic neurons. It is defined by motor impairments, such as bradykinesia, stiffness, resting tremor, and postural instability. The striatum, a structure essential for motor control, is impaired in function due to the significant loss of dopaminergic neurons in the substantia nigra and the development of Lewy bodies in the surviving nigral dopaminergic neurons.

View Article and Find Full Text PDF

Background & Aims: The mechanism behind the progressive pathological alteration in metabolic dysfunction-associated steatotic liver disease/steatohepatitis (MASLD/MASH)-associated hepatocellular carcinoma (HCC) is poorly understood. In the present study, we investigated the role of the polyol pathway enzyme AKR1B1 in metabolic switching associated with MASLD/MASH and in the progression of HCC.

Methods: AKR1B1 expression was estimated in the tissue and plasma of patients with MASLD/MASH, HCC, and HCC with diabetes mellitus.

View Article and Find Full Text PDF

Ulcerative colitis (UC) is an idiopathic, chronic disorder of the intestines characterized by excessive inflammation and oxidative stress. Loganic acid (LA) is an iridoid glycoside reported to have antioxidant and anti-inflammatory properties. However, the beneficial effects of LA on UC are unexplored yet.

View Article and Find Full Text PDF

Exposure to ambient particulate matter (PM) has been shown to disturb the gut microbiome homeostasis and cause initiation of neuroinflammation and neurodegeneration via gut-brain bi-directional axis. Polyaromatic hydrocarbons (PAHs), which are carcinogenic and mutagenic, are important organic constituents of PM that could be involved in the microbiome-gut-brain axis-mediated neurodegeneration. Melatonin (ML) has been shown to modulate the microbiome and curb inflammation in the gut and brain.

View Article and Find Full Text PDF

The clinical use of doxorubicin (Dox) is narrowed due to its carbonyl reduction to doxorubicinol (Doxol) implicating resistance and cardiotoxicity. Hence, in the present study we have evaluated the cardioprotective effect of AKR1B1 (or aldose reductase, AR) inhibitor NARI-29 (epalrestat (EPS) analogue) and its effect in the Dox-modulated calcium/CaMKII/MuRF1 axis. Initially, the breast cancer patient survival associated with AKR1B1 expression was calculated using Kaplan Meier-plotter (KM-plotter).

View Article and Find Full Text PDF

Identifying the target linking inflammation and oxidative stress to aggravate the disease progression will help to prevent colitis associated carcinogenesis. Since AKR1B1 overexpression is observed in inflammatory diseases and various cancers, we have investigated the role of AKR1B1 in colitis-associated colon carcinogenesis with the aid of epalrestat and its potent analogue NARI-29 (investigational molecule) as pharmacological probes. A TNF-α inducible NF-κB reporter cell line (GloResponse™ NF-κB-RE-luc2P HEK293) and dextran sodium sulfate (DSS) and 1,2 dimethyl hydrazine (DMH))-induced mouse model was used to investigate our hypothesis in vitro and in vivo.

View Article and Find Full Text PDF

NLRP3 activation plays a key role in the initiation and progression of a variety of neurodegenerative diseases. However, understanding the molecular mechanisms involved in the bidirectional signaling required to activate the NLRP3 inflammasomes is the key to treating several diseases. Hence, the present study aimed to investigate the role of lipopolysaccharide (LPS) and hydrogen peroxide (HO) in activating NLRP3 inflammasome-driven neurodegeneration and elucidated the neuroprotective role of perillyl alcohol (PA) in in vitro and in vivo models of Parkinson's disease (PD).

View Article and Find Full Text PDF

Major depressive disorder (MDD) is the foremost leading psychiatric illness prevailing around the globe. It usually exists along with anxiety and other clinical conditions (cardiovascular, cancer, neurodegenerative diseases, and infectious diseases). Chronic restraint stress (RS) and LPS-induce neurobehavioral alterations in rodent models however their interaction studies in association with the pathogenesis of MDD are still unclear.

View Article and Find Full Text PDF

Striatal neurons depends on an afferent supply of brain-derived neurotrophic factor-(BDNF) that explicitly interacts with tropomyosin receptor kinase B (TrkB) receptor and performs sundry functions including synaptic plasticity, neuronal differentiation and growth. Therefore, we aimed to scrutinize an active molecule that functions identical to BDNF in activating TrkB receptor and it's downstream targets for restoring neuronal survival in Huntington disease (HD). Data from in vitro Neuro-2a cell line showed that treatment with 7,8-dihydroxyflavone (7,8-DHF), improved 3-nitropropionic acid (3-NP) induced neuronal death by stabilizing the loss of mitochondrial membrane potential and transiently increased the activity of cAMP-response element-binding protein (CREB) and BDNF via TrkB receptor activation.

View Article and Find Full Text PDF

Cellular communication linking microglia activation and dopaminergic neuronal loss play an imperative role in the progression of Parkinson's disease (PD); however, underlying molecular mechanisms are not precise and require further elucidation. NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome activation is extensively studied in context to microglial activation and progressive dopaminergic neuronal loss in PD. Several pathophysiological factors such as oxidative stress, mitochondrial dysfunction impaired mitophagy plays a crucial role in activating NLRP3 inflammasome complex.

View Article and Find Full Text PDF

Stress and lipopolysaccharide (LPS) animal models are used for screening antidepressants and anxiolytic drugs. However, the lacunae for their combination (Restraint stress; RS and LPS) impacting inflammation, apoptosis and antioxidant signaling have not been explored. The present study investigated RS + LPS-induced neurobehavioral and neurochemical anomalies in hippocampus (HIP) and frontal cortex (FC) of mice.

View Article and Find Full Text PDF