Publications by authors named "Samir Kumar Mukherjee"

Small RNA (sRNA) in bacteria serve as the key messengers in regulating genes associated with quorum sensing controlled bacterial virulence. This study was aimed to unveil the regulatory role of sRNA PA0730.1 on the expression of various traits of Pseudomonas aeruginosa linked to pathogenicity, with special emphasis on the growth, colony morphology, cell motility, biofilm formation, and the expression of diverse virulence factors.

View Article and Find Full Text PDF

Pseudomonas aeruginosa, an opportunistic bacterial pathogen of public health concern, is known for its metabolic versatility, adaptability in harsh environment, and pathogenic aggressiveness. P. aeruginosa relies on various regulatory networks modulated by small non-coding RNAs, which in turn influence different physiological traits such as metabolism, stress response, and pathogenesis.

View Article and Find Full Text PDF

, a vivid biofilm-producing bacterium, is considered a dreadful opportunistic pathogen, and thus, management of biofilm-associated infections due to multidrug resistant strains by traditional drugs currently is of great concern. This study was aimed to assess the impact of trigonelline hydrochloride, a pyridine alkaloid, on PAO1, in search of an alternative therapeutant. The effect of trigonelline on colony morphology and motility was studied along with its role on biofilm and expression virulence factors.

View Article and Find Full Text PDF

Background: Copper nanoparticle (CuNP) has well-established antimicrobial activity. Instability in an aqueous medium due to aggregation into larger particles, conversion into metal ions, and oxidation into metal oxides are the major limitations of its practical use against bacterial infections.

Objective: Development of CuNP Conjugated Chitosan Microparticles as a reservoir that will release CuNP effective against notorious bacteria like Methicillin-resistant Staphylococcus aureus.

View Article and Find Full Text PDF

Biogeochemical release of soil-bound arsenic (As) governs mobilization of the toxic metalloid into the groundwater. The present study has examined As-reduction ability of bacteria from anoxic aquatic sediments that might contribute to arsenic mobilization in the Bengal Delta. Arsenic-reducing bacteria from deep layers of pond sediment were enriched and isolated in anaerobic environments and As reduction was assessed in culture medium.

View Article and Find Full Text PDF

The study aims to explore the combinatorial effect of naringin with antibiotics, ciprofloxacin and tetracycline on Pseudomonas aeruginosa biofilms. The antibiofilm efficacy of selected treatment regimes against P. aeruginosa biofilm were quantified by crystal violet assay, MTT assay, Congo red binding assay, and were visualized by confocal laser scanning microscopy and scanning electron microscopy.

View Article and Find Full Text PDF

This study investigated the effects of reserpine, the main bioactive compound of Rauwolfia serpentina, on biofilm formation and biofilm-associated virulence factors production in a Gram-positive pathogen, Staphylococcus aureus. Crystal violet assay, MTT assay, Congo red binding, CLSM studies were performed to assess the antibiofilm activity. Molecular docking was performed to explain the possible mode of action, catheter model was used to evaluate its application potential and the combinatorial study was performed in search of an improved therapeutic formulation.

View Article and Find Full Text PDF

This study aimed to evaluate the effect of reserpine, a plant-derived indole-alkaloid, against Pseudomonas aeruginosa PAO1 biofilms. The anti-biofilm activity of reserpine was evaluated by crystal violet staining, MTT assay, confocal laser scanning microscopy and scanning electron microscopy. Reserpine effects were also assessed by qRT-PCR of quorum sensing (QS)-regulated genes and biochemical quantification of the QS-mediated virulence factors pyocyanin, rhamnolipids, proteases and elastases.

View Article and Find Full Text PDF

Quorum-sensing (QS) is known to play an essential role in regulation of virulence factors and toxins during Pseudomonas aeruginosa infection which may frequently cause antibiotic resistance and hostile outcomes of inflammatory injury. Therefore, it is an urgent need to search for a novel agent with low risk of resistance development that can target QS and inflammatory damage prevention as well. Andrographis paniculata, a herbaceous plant under the family Acanthaceae, native to Asian countries and also cultivated in Scandinavia and some parts of Europe, has a strong traditional usage with its known antibacterial, anti-inflammatory, antipyretic, antiviral and antioxidant properties.

View Article and Find Full Text PDF

African sleeping sickness is a parasitic disease in humans and livestock caused by Trypanosoma brucei throughout sub-Saharan Africa. Absence of appropriate vaccines and prevalence of drug resistance proclaim that a new way of therapeutic interventions is essential against African trypanosomiasis. In the present study, we have looked into the effect of andrographolide (andro), a diterpenoid lactone from Andrographis paiculata on Trypanosoma brucei PRA 380.

View Article and Find Full Text PDF

The goal of this study was to evaluate the antibiofilm and antimicrobial activities of Bacoside A, a formulation of phytochemicals from Bacopa monnieri, against Staphylococcus aureus and Pseudomonas aeruginosa, which are known to form biofilms as one of their virulence traits. The antimicrobial effects of Bacoside A were tested using the minimum inhibitory concentration and minimum bactericidal concentration assays. A cell membrane disruption assay was performed to find its possible target site.

View Article and Find Full Text PDF

Increasing bacterial resistance to common drugs is a major public health concern for the treatment of infectious diseases. Certain naturally occurring compounds of plant sources have long been reported to possess potential antimicrobial activity. This study was aimed to investigate the antibacterial activity and possible mechanism of action of andrographolide (Andro), a diterpenoid lactone from a traditional medicinal herb Andrographis paniculata.

View Article and Find Full Text PDF

Nickel resistant bacterial strain Enterobacter asburiae KUNi5 was isolated and showed resistance up to 15 mM and could remove Ni optimally better at 37 degrees C and pH 7. Maximum removal was found at initial concentration of 0.5 to 2 mM, however, growth and Ni removal were affected by other heavy metals.

View Article and Find Full Text PDF

Background: Breast cancer is considered as an increasing major life-threatening concern among the malignancies encountered globally in females. Traditional therapy is far from satisfactory due to drug resistance and various side effects, thus a search for complementary/alternative medicines from natural sources with lesser side effects is being emphasized. Andrographis paniculata, an oriental, traditional medicinal herb commonly available in Asian countries, has a long history of treating a variety of diseases, such as respiratory infection, fever, bacterial dysentery, diarrhea, inflammation etc.

View Article and Find Full Text PDF

Arsenic (As) contamination of soil and water has been considered as a major global environmental issue during last few decades. Among the various methods so far reported for reclamation of As contaminated rhizosphere soil, bioremediation using bacteria has been found to be most promising. An As resistant bacterial isolate Brevibacillus sp.

View Article and Find Full Text PDF

The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study.

View Article and Find Full Text PDF

This Article deals with the toxicological study of synthesized CdO nanoparticles (NPs) on Escherichia coli . Characterization of the CdO NPs was done by DLS, XRD, TEM, and AFM studies, and the average size of NPs was revealed as 22 ± 3 nm. The NPs showed bactericidal activity against E.

View Article and Find Full Text PDF

This article deals with toxicological study of cadmium (Cd) as CdCl(2) on the growth and cell morphology of Escherichia coli K-12 MG1655. The minimum inhibitory concentration of Cd was 15μM. When cadmium was added at mid-log phase, growth was completely inhibited at 0.

View Article and Find Full Text PDF

Microbial enzymatic reduction of a toxic form of chromium [Cr(VI)] has been considered as an effective method for bioremediation of this metal. This study reports on the in vitro reduction of Cr(VI) using cell-free extracts from a Cr(VI) reducing Bacillus firmus KUCr1 strain. Chromium reductase was found to be constitutive and its activity was observed both in soluble cell fractions (S12 and S150 and membrane cell fraction (P150).

View Article and Find Full Text PDF

A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase.

View Article and Find Full Text PDF

A chromium resistant bacterial strain KUCr1 exhibiting potential Cr(VI) reducing ability under in vitro aerobic condition is reported. The bacterial strain showed varied degree of resistance to different heavy metals. The MIC of chromium to this strain was found to be 950 mM under aerobic culture condition in complex medium.

View Article and Find Full Text PDF

This study focuses on the isolation and characterization of a high cadmium (Cd)-resistant bacterial strain, and possible exploitation of its Cd-accumulation and Cd-induced siderophore production property to improve plant growth in cadmium-contaminated soil through root colonization. The bacterial strain could tolerate up to 8 mM of Cd and could accumulate Cd intracellularly. The strain showed Cd-induced siderophore production maximally at 1.

View Article and Find Full Text PDF