Publications by authors named "Samir Boudibi"

The groundwater salinization process complexity and the lack of data on its controlling factors are the main challenges for accurate predictions and mapping of aquifer salinity. For this purpose, effective machine learning (ML) methodologies are employed for effective modeling and mapping of groundwater salinity (GWS) in the Mio-Pliocene aquifer in the Sidi Okba region, Algeria, based on limited dataset of electrical conductivity (EC) measurements and readily available digital elevation model (DEM) derivatives. The dataset was randomly split into training (70%) and testing (30%) sets, and three wrapper selection methods, recursive feature elimination (RFE), forward feature selection (FFS), and backward feature selection (BFS) are applied to train the data.

View Article and Find Full Text PDF

Biskra region currently shows signs of stress and a high risk of groundwater contamination by various chemicals and pesticides. For this purpose, a modified integrated susceptibility index (SI) is coupled with remote sensing (RS) and WetSpass model to assess the sensitivity of the groundwater and the risk of pollution in the most exploited aquifer (Quaternary aquifer) in the study area. The results of the modified SI model show that a major part of the aquifer is at risk of contamination if the farmers do not implement good agricultural practices.

View Article and Find Full Text PDF

The water quality index is one of the prominent general indicators to assess and classify surface water quality, which plays a critical role in river water resources practices. This research constructs a hybrid artificial intelligence model namely sequential minimal optimization-support vector machine (SMO-SVM) along with random forest (RF) as a benchmark model for predicting water quality values at the Wadi Saf-Saf river basin in Algeria. The fifteen input water quality datasets such as biochemical oxygen demand (BOD), oxygen saturation (OS), the potential for hydrogen (pH), chemical oxygen demand (COD), chloride (Cl), dissolved oxygen (DO), electrical conductivity (EC), total dissolved solids (TDS), nitrate-nitrogen (NO-N), nitrite-nitrogen (NO-N), phosphate (PO), ammonium (NH), temperature (T), turbidity (NTU), and suspended solids (SS) were employed for constructing the predictive models.

View Article and Find Full Text PDF