The selective cross-coupling of two alkyl electrophiles to construct complex molecules remains a challenge in organic synthesis. Known reactions are optimized for specific electrophiles and are not amenable to interchangeably varying electrophilic substrates that are sourced from common alkyl building blocks, such as amines, carboxylic acids and halides. These limitations restrict the types of alkyl substrate that can be modified and, ultimately, the chemical space that can be explored.
View Article and Find Full Text PDFReactions of unactivated alkyl chlorides under mild and sustainable conditions are rare compared to those of alkyl bromides or iodides. As a result, synthetic methods capable of modifying the vast chemical space of chloroalkane reagents, wastes, and materials are limited. We report the cobalt-catalyzed reductive addition of unactivated alkyl chlorides to conjugated alkenes.
View Article and Find Full Text PDFElectroreductive cross-electrophile coupling (eXEC) represents an attractive approach for the direct C-C coupling of two electrophiles but generally suffers from limited scope compared to reactions with chemical reductants. This work demonstrates that mediator-assisted electrocatalysis is a general strategy for the enhancement of eXEC reactions. While eXEC reactions catalyzed by a variety of widely available ligand-nickel complexes are low yielding when applied to reductive couplings of challenging substrates, reactions with the same complexes generate products in near-quantitative yield when a redox-matched mediator is included.
View Article and Find Full Text PDF