Publications by authors named "Samineh Mesbah"

Study Design: This is a report of methods and tools for selection of task and individual configurations targeted for voluntary movement, standing, stepping, blood pressure stabilization, and facilitation of bladder storage and emptying using tonic-interleaved excitation of the lumbosacral spinal cord.

Objectives: This study aimed to present strategies used for selection of stimulation parameters for various motor and autonomic functions.

Conclusions: Tonic-interleaved functionally focused neuromodulation targets a myriad of consequences from spinal cord injury with surgical implantation of the epidural electrode at a single location.

View Article and Find Full Text PDF

With emerging applications of spinal cord electrical stimulation in restoring autonomic and motor function after spinal cord injury, understanding the neuroanatomical substrates of the human spinal cord after spinal cord injury using neuroimaging techniques can play a critical role in optimizing the outcomes of these stimulation-based interventions. In this study, we have introduced a neuroimaging acquisition and analysis protocol of the spinal cord in order to identify: (i) spinal cord levels at the lumbosacral enlargement using nerve root tracing; (ii) variability in the neuroanatomical characteristics of the spinal cord among individuals; (iii) location of the epidural stimulation paddle electrode and contacts with respect to the spinal cord levels at lumbosacral enlargement; and (iv) the links between the anatomical levels of stimulation and the corresponding neurophysiological motor responses. Twelve individuals with chronic, motor complete spinal cord injury implanted with a spinal cord epidural stimulator were included in the study (age: 34 ± 10.

View Article and Find Full Text PDF

It has been suggested that neuroplasticity-promoting neuromodulation can restore sensory-motor pathways after spinal cord injury (SCI), reactivating the dormant locomotor neuronal circuitry. We introduce a neuro-rehabilitative approach that leverages locomotor training with multi-segmental spinal cord transcutaneous electrical stimulation (scTS). We hypothesized that scTS neuromodulates spinal networks, complementing the neuroplastic effects of locomotor training, result in a functional progression toward recovery of locomotion.

View Article and Find Full Text PDF

Profound dysfunctional reorganization of spinal networks and extensive loss of functional continuity after spinal cord injury (SCI) has not precluded individuals from achieving coordinated voluntary activity and gaining multi-systemic autonomic control. Bladder function is enhanced by approaches, such as spinal cord epidural stimulation (scES) that modulates and strengthens spared circuitry, even in cases of clinically complete SCI. It is unknown whether scES parameters specifically configured for modulating the activity of the lower urinary tract (LUT) could improve both bladder storage and emptying.

View Article and Find Full Text PDF

Spinal cord epidural stimulation (scES) is an intervention to restore motor function in those with severe spinal cord injury (SCI). Spinal cord lesion characteristics assessed via magnetic resonance imaging (MRI) may contribute to understand motor recovery. This study assessed relationships between standing ability with scES and spared spinal cord tissue characteristics at the lesion site.

View Article and Find Full Text PDF

Study Design: This is a narrative review focused on specific challenges related to adequate controls that arise in neuromodulation clinical trials involving perceptible stimulation and physiological effects of stimulation activation.

Objectives: 1) To present the strengths and limitations of available clinical trial research designs for the testing of epidural stimulation to improve recovery after spinal cord injury. 2) To describe how studies can control for the placebo effects that arise due to surgical implantation, the physical presence of the battery, generator, control interfaces, and rehabilitative activity aimed to promote use-dependent plasticity.

View Article and Find Full Text PDF

Spinal cord epidural stimulation (scES) has enabled volitional lower extremity movements in individuals with chronic and clinically motor complete spinal cord injury and no clinically detectable brain influence. The aim of this study was to understand whether the individuals' neuroanatomical characteristics or positioning of the scES electrode were important factors influencing the extent of initial recovery of lower limb voluntary movements in those with clinically motor complete paralysis. We hypothesized that there would be significant correlations between the number of joints moved during attempts with scES prior to any training interventions and the amount of cervical cord atrophy above the injury, length of post-traumatic myelomalacia and the amount of volume coverage of lumbosacral enlargement by the stimulation electrode array.

View Article and Find Full Text PDF

The appropriate selection of individual-specific spinal cord epidural stimulation (scES) parameters is crucial to re-enable independent standing with self-assistance for balance in individuals with chronic, motor complete spinal cord injury, which is a key achievement toward the recovery of functional mobility. To date, there are no available algorithms that contribute to the selection of scES parameters for facilitating standing in this population. Here, we introduce a novel framework for EMG data processing that implements spectral analysis by continuous wavelet transform and machine learning methods for characterizing epidural stimulation-promoted EMG activity resulting in independent standing.

View Article and Find Full Text PDF

Severe spinal cord injury (SCI) leads to skeletal muscle atrophy and adipose tissue infiltration in the skeletal muscle, which can result in compromised muscle mechanical output and lead to health-related complications. In this study, we developed a novel automatic 3-D approach for volumetric segmentation and quantitative assessment of thigh Magnetic Resonance Imaging (MRI) volumes in individuals with chronic SCI as well as non-disabled individuals. In this framework, subcutaneous adipose tissue, inter-muscular adipose tissue and total muscle tissue are segmented using linear combination of discrete Gaussians algorithm.

View Article and Find Full Text PDF

Voluntary movements and the standing of spinal cord injured patients have been facilitated using lumbosacral spinal cord epidural stimulation (scES). Identifying the appropriate stimulation parameters (intensity, frequency and anode/cathode assignment) is an arduous task and requires extensive mapping of the spinal cord using evoked potentials. Effective visualization and detection of muscle evoked potentials induced by scES from the recorded electromyography (EMG) signals is critical to identify the optimal configurations and the effects of specific scES parameters on muscle activation.

View Article and Find Full Text PDF