Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge.
View Article and Find Full Text PDFHuge amounts of high-throughput screening (HTS) data for probe and drug development projects are being generated in the pharmaceutical industry and more recently in the public sector. The resulting experimental datasets are increasingly being disseminated via publically accessible repositories. However, existing repositories lack sufficient metadata to describe the experiments and are often difficult to navigate by non-experts.
View Article and Find Full Text PDFBackground: High-throughput screening (HTS) is one of the main strategies to identify novel entry points for the development of small molecule chemical probes and drugs and is now commonly accessible to public sector research. Large amounts of data generated in HTS campaigns are submitted to public repositories such as PubChem, which is growing at an exponential rate. The diversity and quantity of available HTS assays and screening results pose enormous challenges to organizing, standardizing, integrating, and analyzing the datasets and thus to maximize the scientific and ultimately the public health impact of the huge investments made to implement public sector HTS capabilities.
View Article and Find Full Text PDF