Publications by authors named "Samina Ahmed"

Hematite (α-FeO) nanoparticles have been synthesized from waste source of iron which contains a prominent amount of iron (93.2 %) and investigated the effect of low temperature calcination. The two-step synthesis method involved preparing ferrous sulfate through acid leaching process followed by oxidation and calcination at temperatures ranging from 200 to 400 °C to produce the desired α-FeO in nano form.

View Article and Find Full Text PDF

Waste generation from fish processing sectors has become a significant environmental concern. This issue is exacerbated in countries with high aquaculture production and inefficient fish scale (FS) utilization. This study prepared and compared highly crystalline hydroxyapatite (HAp) from the FS of an anadromous fish, (I-HAp), and a freshwater fish, (R-HAp).

View Article and Find Full Text PDF

In this research, nano-hydroxyapatite synthesized from seashells (Ss/nHAp) and the potential of Ss/nHAp as an adsorbent for eliminating Congo Red (CR) dye from aqueous solutions were explored. The synthesized Ss/nHAp was subjected to characterization using various techniques, including XRD, XPS, FTIR, Raman, BET, FESEM in order to understand the material thoroughly. Batch adsorption experiments were conducted to establish the optimal conditions for removing the dye, considering variables such as adsorbent dosage, contact time, pH and initial dye concentration.

View Article and Find Full Text PDF

The deployment of magnetically responsive and polymeric materials to remove dyes that are hazardous in aquatic environments has profoundly revolutionized environmental sustainability. This study focuses on removing the hazardous cationic Malachite Green (MG) dye from solutions, employing a novel magnetic composite film as an adsorbent, designated as AgCo FeO (ACFCeP). The composite was synthesized solvent casting, incorporating AgCo FeO nanoparticles and CeO into a cellulose acetate/polyvinylpyrrolidone (CA/PVP) polymer matrix.

View Article and Find Full Text PDF

Hydroxyapatite (HAp) synthesis was achieved through a hydrothermal method involving orthophosphoric acid and calcium hydroxide. Different organic modifiers such as urea, naphthalene, and palmitic acid were applied in the reaction system to modify the crystallite size along with the morphology of HAp. The synthesized HAp was validated X-ray diffraction (XRD) data, Fourier Transform Infrared (FTIR) spectra, Field Emission Scanning Electron Microscopy (FESEM) image, and optical bandgap energy (<6 eV) was determined through UV-vis spectrophotometry.

View Article and Find Full Text PDF

As the textile industry expands, more industrial waste effluents are released into natural water streams, prompting the research and development of innovative materials for the remediation of environmental issues. In this research, a direct precipitation and hydrolysis method were used to synthesize ZnO and TiO nanoparticles, respectively that were utilized to investigate the photocatalytic activity of Congo Red (CR) dye. Afterward, the crystallite size was computed from the data of the X-ray diffractometer (XRD), and utilizing several models (Scherrer equation, LSLMSE, Monshi-Scherrer equation, Williamson-Hall model, Size-strain plot method, Halder-Wagner model, Sahadat-Scherrer model).

View Article and Find Full Text PDF

Photocatalytic degradation is a highly efficient technique for eliminating organic pollutants such as antibiotics, organic dyes, toluene, nitrobenzene, cyclohexane, and refinery oil from the environment. The effects of operating conditions, concentrations of contaminants and catalysts, and their impact on the rate of deterioration are the key focuses of this review. This method utilizes light-activated semiconductor catalysts to generate reactive oxygen species that break down contaminants.

View Article and Find Full Text PDF

The study aims to synthesize nano-crystallite TSP using renewable, low-cost, waste marine mollusk from three different species such as Babylonia japonica, Oliva sayana, and Conasprella bermudensis. The molar ratio of phosphate to calcium in triple superphosphate [TSP, Ca(HPO).HO] significantly impacts its properties and fertilizer performance, in this case, we kept the ratio to 2.

View Article and Find Full Text PDF

The research involves developing eco-friendly polymer composites by combining synthetic unsaturated polyester resin (UPR) with treated and untreated leather fibers (LF), cow hair fibers (CHF), and chicken feather fibers (CFF). By using these natural fibers instead of synthetic polymer, we aim to reduce the environmental impact while finding new purposes for waste materials from the poultry and tannery industries which would otherwise end up in garbage. The fibers were incorporated into the resin matrix at various weight percentages such as 2, 5, 7, 10, 12, and 15 % (w/w).

View Article and Find Full Text PDF

Wound healing requires a substantial amount of moisture for faster recovery. Completely hydrophobic or hydrophilic biomaterials are not suitable to be applied for cell growth in wounded areas. The study aimed to prepare a nanofibrous scaffold from the blend of a solution of hydrophobic PLA and a solution of hydrophilic gelatine.

View Article and Find Full Text PDF

In this research, HAp nanocrystals were synthesized using conventional wet chemical precipitation methods using various organic modifiers, including urea, palmitic acid, and naphthalene. Ethanol and isopropyl alcohol (IPA) were used as solvents in this process. Different characterization techniques, namely X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-vis absorption spectroscopy, were employed to ascertain the formation of HAp nanocrystals.

View Article and Find Full Text PDF

In this research, we explain the production of sodium-doped hydroxyapatite (Na_HAp) wet chemical precipitation, followed by crystal modification. To enhance its photocatalytic activity different % of (0.25, 0.

View Article and Find Full Text PDF

The textile industry, a vital economic force in developing nations, faces significant challenges including the release of undesired dye effluents, posing potential health and environmental risks which need to be minimized with the aid of sustainable materials. This study focuses on the photocatalytic potential of hydroxyapatite together with different dopants like titanium-di-oxide (TiO) and zinc oxide (ZnO). Here, we synthesized hydroxyapatite (HAp) using different calcium sources (calcium hydroxide, calcium carbonate) and phosphorous sources (phosphoric acid, diammonium hydrogen phosphate) precursors through a wet chemical precipitation technique.

View Article and Find Full Text PDF
Article Synopsis
  • * Various percentages of HAp (ranging from 10% to 50%) were mixed with UPR, and the resulting composite materials were characterized using techniques like tensile strength tests, infrared spectroscopy, and scanning electron microscopy.
  • * The research concluded that the optimal HAp content for enhanced mechanical properties was 40%, showing significant improvements over controls, and the degradation temperatures of the composites were analyzed up to 600 °C.
View Article and Find Full Text PDF

The applications of calcium phosphates (hydroxyapatite, tetracalcium phosphate, tricalcium phosphate (alpha and beta), fluorapatite, di-calcium phosphate anhydrous, and amorphous calcium-phosphate) are increasing day by day. Calcium hydroxyapatite, commonly known as hydroxyapatite (HAp), represents a mineral form of calcium apatite. Owing to its close molecular resemblance to the mineral constituents of bones, teeth, and hard tissues, HAp is often employed in the biomedical domain.

View Article and Find Full Text PDF

Hydroxyapatite (HAp) [Ca(PO)(OH)] is remarkably similar to the hard tissue of the human body and the uses of this material in various fields in addition to the medical sector are increasing day by day. In this research, mustered oil, soybean oil, as well as coconut oil were employed as liquid media for synthesizing nanocrystalline HAp using a wet chemical precipitation approach. The X-ray diffraction (XRD) study verified the crystalline phase of the HAp in all the indicated media and discovered similarities with the standard database.

View Article and Find Full Text PDF

Hydroxyapatite (HAp) is comparable to materials in bone because its chemical components are similar to those contained in animal bone, and thus, its bioactive and biocompatible properties are similar. There are applications for HAp and relevant calcium phosphate in the medical and industrial sectors, and due to the rising demand for HAp nanoparticles, considerable work has been performed to develop a variety of synthetic pathways that incorporate scientifically and practically novel aspects. Numerous studies have been conducted to examine how changes in reaction parameters will successfully influence crucial HAp features.

View Article and Find Full Text PDF

In this study, we have introduced a method for the synthesis of various metal-doped nano-crystalline hydroxyapatites (HAp) using a standard wet chemical precipitation technique. Both divalent (Ni and Zn) and trivalent (Al and Fe) metals were selected for the doping process. Additional research work was also conducted to assess the antimicrobial efficacy of these doped-HAps against a range of gram-positive and gram-negative microorganisms.

View Article and Find Full Text PDF

The integration of bioactive substances with antibiotics has been extensively pursued for the treatment of osteomyelitis. These materials, also known as biomaterials, can serve both as bone replacements and targeted drug delivery systems for antibiotics. In this study, biomimetic nano-hydroxyapatite (nHAp) was synthesized the coprecipitation technique where waste chicken eggshell (WCE) was employed as the source of Ca.

View Article and Find Full Text PDF

β-tricalcium phosphate (β-TCP) was synthesized in an organic medium (acetone) to obtain a single-phase product while calcium carbonate (CaCO) and -phosphoric acid (HPO) were the sources of Ca, and P, respectively. The synthesized β-TCP was characterized by employing a number of sophisticated techniques vis. XRD, FTIR, FESEM, VSM and UV-Vis-NIR spectrometry.

View Article and Find Full Text PDF

Hydroxyapatites were synthesized from calcium carbonate and -phosphoric acid in amorphous and crystalline phases by varying sintering temperature from 300 to 1100 °C maintaining an increment of 200 °C. The asymmetric and symmetric stretching, and bending vibrations of phosphate and hydroxyl groups were explored in Fourier transformation infrared (FTIR) spectra. Although the FTIR spectra revealed identical peaks in the full range (400-4000 cm wavenumber), the narrow spectra exerted variations by splitting peaks and intensity.

View Article and Find Full Text PDF

The well-known biomaterial Ca-hydroxyapatite (Hap) in its pristine form holds the top ranking position in the field of biomedical research and extensive investigation is continuing across the globe to enhance its competency. Hence, having the intention to introduce superior physiognomies ( cytotoxicity, haemocompatibility, and bioactivity coupled with antimicrobial and antioxidant activity) in Hap, in this research work, we exposed Hap to 200 kGy γ-radiation. As a result, γ-radiated Hap exhibited extreme antimicrobial (more than 98%) and moderate (∼34%) antioxidant properties.

View Article and Find Full Text PDF

Ceramic grade red iron oxide (α-FeO) nanoparticles pigments have been synthesized from waste condensed milk containers which contain a prominent amount of iron (93.2%). The synthesis method comprised of two steps: in the first step ferrous sulfate was prepared following an acid leaching method; while the second step was oxidation and calcination of ferrous sulfate to produce desired α-FeO in nano form.

View Article and Find Full Text PDF

Plaster of Paris, a well-known biomaterial, was synthesized from waste eggshells, which were chosen as an available bio-source of calcium. The produced plaster of Paris was characterized by X-ray diffraction (XRD), Fourier Transform Infrared (FTIR), Raman spectroscopy, UV-Vis spectroscopy, and SEM images along with a few crystallographic parameters such as crystallite size (Scherrer equation and different model equations), lattice parameters, crystallinity index, the volume of the unit cell, microstrain, dislocation density, growth preference, and residual stress from the XRD-sin  technique. The biomedical competency of the prepared plaster of Paris was evaluated utilizing the cytotoxicity, hemolysis, and antimicrobial activity of and .

View Article and Find Full Text PDF

Since the outbreak of novel coronavirus (COVID-19), the use of personal protective equipment (PPE) has increased profusely. Among all the PPEs, face masks are the most picked ones by the mass people for protective purpose. This spawned extensive daily use of face masks and production of masks had to augment to keep up this booming demand.

View Article and Find Full Text PDF