Purpose: To analyze spatiotemporal trends in hospitalizations for cardiovascular diseases (CVD) sensitive to primary health care (PHC) among individuals aged 50-69 years in Paraná State, Brazil, from 2014 to 2019 and investigate correlations between PHC services and the Social Development Index.
Methods: We conducted a cross-sectional ecological study using publicly available secondary data to analyze the municipal incidence of hospitalizations for CVD sensitive to PHC and to estimate the risk of hospitalization for this group of diseases and associated factors using hierarchical Bayesian spatiotemporal modeling with Markov chain Monte Carlo simulation.
Results: There was a 5% decrease in the average rate of hospitalizations for PHC-sensitive CVD from 2014 to 2019.
Smoking cessation is an important public health policy worldwide. However, as far as we know, there is a lack of screening of variables related to the success of therapeutic intervention (STI) in Brazilian smokers by machine learning (ML) algorithms. To address this gap in the literature, we evaluated the ability of eight ML algorithms to correctly predict the STI in Brazilian smokers who were treated at a smoking cessation program in Brazil between 2006 and 2017.
View Article and Find Full Text PDF