Metal electrodeposition systems display tree-like structures with extensive ramification and a fractal character. Electrolysis is not a necessary route for the growth of such dendritic metal deposits. We can grow beautiful ramification patterns via a simple redox reaction.
View Article and Find Full Text PDFThe dinuclear complex bis[(μ(2)-chloro)chloro(1,10-phenanthroline)copper(II)] (1) was synthesized, and characterized by X-ray, FTIR and thermal analysis. The fitting of magnetic susceptibility and magnetization curve of (1) indicates the occurrence of weak antiferromagnetic exchange interaction between copper(II) ions. The electronic structure has been also determined by density functional theory (DFT) method.
View Article and Find Full Text PDFThe novel dimeric polyoxometalate [{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)](12)(-) (1) has been synthesized and characterized by IR spectroscopy, polarography, elemental analysis, thermogravimetric analysis, and magnetic measurements. An X-ray single-crystal analysis was carried out on K(12)[{beta-SiNi(2)W(10)O(36)(OH)(2)(H(2)O)}(2)].20H(2)O, which crystallizes in the monoclinic system, space group P2(1)/n, with a = 13.
View Article and Find Full Text PDF