Publications by authors named "Samia Regiane Lourenco Joca"

The antidepressant effect of ketamine has been widely acknowledged and the use of one of its enantiomers, S-ketamine (esketamine), has recently been approved for the clinical management of treatment-resistant depression. As with ketamine, the non-selective opioid receptor-interacting drug buprenorphine is reported to have antidepressant and anxiolytic properties in humans and rodents. Given the fact that antidepressant drugs are also first line treatment for panic disorder, it is surprising that the potential panicolytic effect of these compounds has been scarcely (ketamine), or not yet (buprenorphine) investigated.

View Article and Find Full Text PDF

Objectives: To investigate S-adenosyl-methyonine (SAM) effects on PC12 cells viability and neuritogenesis treated with MPP+ (1-methyl-4-phenylpyridinium).

Methods: PC12 cell viability test (MTT assay) in DMEM medium with SAM and/or MPP+; PC12 cell neuritogenesis test in F-12K medium with nerve growth factor (NGF); DNMT activity in PC12 cells (DNMT Activity Assay Kit) with SAM and/or MPP+.

Key Findings: (1) MPP+ decreased cell viability; (2) SAM did not affect cell viability per se, but it increased MPP+ neurotoxicity when co-incubated with the neurotoxin, an effect abolished by DNA methyltransferases (DNMT) inhibitors; (3) pretreatment with SAM for 30 min or 24 h before MPP+ addition had no effect on cell viability.

View Article and Find Full Text PDF

Nitric oxide (NO) triggers escape reactions in the dorsal periaqueductal gray matter (dPAG), a core structure mediating panic-associated response, and decreases the release of BDNF in vitro. BDNF mediates the panicolytic effect induced by antidepressant drugs and produces these effects per se when injected into the dPAG. Based on these findings, we hypothesize that nitric oxide synthase (NOS) inhibitors would have panicolytic properties associated with increased BDNF signaling in the dPAG.

View Article and Find Full Text PDF

Life stressors during critical periods are reported to trigger an immune dysfunction characterised by abnormal production of inflammatory cytokines. Despite the relationship between early stressors and schizophrenia is described, the evidence on inflammatory biomarkers remains limited. We aimed to investigate whether an imbalance between pro- and anti-inflammatory cytokines in the brain is reflected in the peripheral blood of rats submitted to post-weaning social isolation (pwSI), a model with validity to study schizophrenia.

View Article and Find Full Text PDF

Previous clinical and pre-clinical studies suggest the involvement of ventromedial orbitofrontal cortex (vmOFC) and glutamatergic neurotransmission in obsessive-compulsive disorder (OCD). Ketamine, an NMDA glutamatergic receptor antagonist, has shown a rapid and long-lasting antidepressant effect, but its anti-compulsive effect has been scarcely investigated. The antidepressant effect of ketamine involves NMDA receptor blockade, AMPA receptor activation, increased serotonin (5-HT) release and attenuation of nitric oxide (NO) synthesis.

View Article and Find Full Text PDF

Galanin is a neuropeptide distributed in human and rat brain regions that are involved with emotional regulation, such as the dorsal raphe nucleus (DRN). Galanin effects in the DRN are mediated by GAL and GAL receptors Intracerebral infusion of a GAL (AR-M1896) or a GAL (M617) agonist induced either antidepressant or depressive-like effect, respectively, in rats exposed to the forced swimming test (FST). However, it is not clear if GAL and/or GAL receptors present in the DRN would be involved in such effects.

View Article and Find Full Text PDF

Evidences suggest the contributive role of early-life stress (ELS) to affective and anxiety disorders. Chronic exposure to the same stressor may generate habituation, while the exposure to different and repeated stressors gradually promotes maladaptive plasticity. Therefore, to further understand the effects of heterotypic stressors during early life period, male Wistar rat pups (P1-P21) were exposed to Multimodal ELS paradigm.

View Article and Find Full Text PDF

Objective: The cannabinoid receptor 1 (CB1) and transient receptor potential cation channel subfamily V member 1 (TRPV1) are proposed to mediate opposite behavioural responses. Their common denominator is the endocannabinoid ligand anandamide (AEA), which is believed to mediate antidepressant-like effect via CB1-R stimulation and depressive-like effect via TRPV1 activation. This is supposed to explain the bell-shaped dose-response curve for anandamide in preclinical models.

View Article and Find Full Text PDF

Objective: Stress increases DNA methylation and decreases the expression of genes involved in neural plasticity, while treatment with DNA methyltransferase inhibitors (DNMTi) increases gene expression and induces antidepressant-like effects in preclinical models. Therefore, the aim of the present work was to further investigate the potential antidepressant-like effect induced by DNMTi by evaluating the behavioural effects induced by associating DNMTi treatment with conventional antidepressant drugs in mice submitted to the forced swimming test (FST). In addition, brain levels of DNA methylation were also investigated.

View Article and Find Full Text PDF

The ventral medial prefrontal cortex (vMPFC) has direct connections to subcortical, diencephalic and brainstem structures that have been closely related to depression. However, studies aimed at investigating the role of the vMPFC in the neurobiology of depression have produced contradictory results. Moreover, the precise involvement of vMPFC anatomic subdivisions, the prelimbic (PL) and the infralimbic (IL) cortices, in regulating depressive-like behavior have been poorly investigated.

View Article and Find Full Text PDF

Several findings relate the hippocampal formation to the behavioural consequences of stress. It contains a high concentration of corticoid receptors and undergoes plastic modifications, including decreased neurogenesis and cellular remodelling, following stress exposure. Various major neurotransmitter systems in the hippocampus are involved in these effects.

View Article and Find Full Text PDF

The hippocampus has been implicated in the regulation of anxiety and memory processes. Nevertheless, the precise contribution of its ventral (VH) and dorsal (DH) division in these issues still remains a matter of debate. The Trial 1/2 protocol in the elevated plus-maze (EPM) is a suitable approach to assess features associated with anxiety and memory.

View Article and Find Full Text PDF

Recent pieces of evidence suggest that the dorsal hippocampus may mediate adaptation to severe and inescapable stress, possibly by the facilitation of serotonergic and/or noradrenergic neurotransmission. Chronic social stress and high corticosteroid levels would impair this coping mechanism, predisposing animals to learned helplessness. To test the hypothesis that increasing serotonin or noradrenaline levels in the dorsal hippocampus would attenuate the development of learned helplessness (LH), rats received inescapable foot shock (IS) and were tested in a shuttle box 24 h latter.

View Article and Find Full Text PDF

Rationale: Systemic inhibition of neuronal nitric oxide synthase (nNOS) induces antidepressant-like effects in rodents. The mechanisms and brain regions mediating this effect are still unknown. The hippocampus is a brain region proposed to mediate adaptation to stress and antidepressant behavioral effects.

View Article and Find Full Text PDF

Activation of post-synaptic 5-HT(1A) receptors in the dorsal hippocampus is proposed to mediate stress adaptation. Chronic social stress and high corticosteroid levels would impair this coping mechanism, predisposing animals to learned helplessness. To test the hypothesis that increasing serotonin levels in the dorsal hippocampus would attenuate the development of learned helplessness, rats received inescapable foot-shock (pre-test session) and were tested in a shuttle box 24-h later.

View Article and Find Full Text PDF

Serotonin (5-HT) neurons located in the median raphe nucleus (MRN) may have a role in the development of behavioral changes to stress. The objective of the present work was to investigate the effects of a selective lesion of 5-HT neurons located in the MRN in previously stressed male Wistar rats submitted to the elevated plus maze (EPM). In an initial experiment, the animals (n=20-22) were submitted to one (acute) or seven (chronic) daily restraint stress periods (2 h) and tested in the EPM 24 h later.

View Article and Find Full Text PDF

The aim of the present work was to investigate if isolation rearing could change 5-HT1A or M1 muscarinic receptors messenger RNA (mRNA) expression in the hippocampal formation. Male Wistar rats were isolated either in single cages or in groups of six per cage soon after wearing during 30 days. After this period they were sacrificed and their brains removed for 'in situ' hybridization study using 32P-labeled oligonucleotide probes complementary to 5-HT1A or M1 muscarinic receptor mRNA.

View Article and Find Full Text PDF