Publications by authors named "Sami Zoghbi"

[F]SF51 is a novel radioligand for imaging translocator protein 18 kDa (TSPO) that previously displayed excellent imaging properties in nonhuman primates. This study assessed its performance in human brain and its dosimetry. Seven healthy participants underwent brain PET imaging to measure TSPO binding using a two-tissue compartment model (2TCM) to calculate total distribution volume ().

View Article and Find Full Text PDF

Our laboratory recently developed [C]PS13 as a PET radioligand to selectively measure cyclooxygenase-1 (COX-1). The cyclooxygenase enzyme family converts arachidonic acid into prostaglandins and thromboxanes, which mediate inflammation. The total brain uptake of [C]PS13, which is composed of both specific binding and background uptake, can be accurately quantified with gold standard methods of compartmental modeling.

View Article and Find Full Text PDF
Article Synopsis
  • The cAMP cascade is important for regulating alcohol behaviors, showing different effects with short-term vs. long-term alcohol consumption.
  • PDE4 is the main enzyme that breaks down cAMP in the brain, and a specific subtype, PDE4B, is linked to alcohol and substance use disorders.
  • The study used PET imaging in rats to show that acute alcohol increases PDE4B activity, while chronic alcohol decreases it, suggesting that PDE4B imaging could help understand and treat alcohol use disorders in humans.
View Article and Find Full Text PDF

Positron emission tomography (PET) reporter systems are a valuable means of estimating the level of expression of a transgene in vivo. For example, the safety and efficacy of gene therapy approaches for the treatment of neurological and neuropsychiatric disorders could be enhanced via the monitoring of exogenous gene expression levels in the brain. The present study evaluated the ability of a newly developed PET reporter system [F]fluoroestradiol ([F]FES) and the estrogen receptor-based PET reporter ChRERα, to monitor expression levels of a small hairpin RNA (shRNA) designed to suppress choline acetyltransferase (ChAT) expression in rhesus monkey brain.

View Article and Find Full Text PDF

Phosphodiesterase-4D (PDE4D) has emerged as a significant target for treating neuropsychiatric disorders, but no PET radioligand currently exists for robustly quantifying human brain PDE4D to assist biomedical research and drug discovery. A prior candidate PDE4D PET radioligand, namely [C]T1650, failed in humans because of poor time stability of brain PDE4D-specific signal (indexed by total volume of distribution), likely due to radiometabolites accumulating in brain. Its nitro group was considered to be a source of the brain radiometabolites.

View Article and Find Full Text PDF

Chemogenetic tools are designed to control neuronal signaling. These tools have the potential to contribute to the understanding of neuropsychiatric disorders and to the development of new treatments. One such chemogenetic technology comprises modified Pharmacologically Selective Actuator Modules (PSAMs) paired with Pharmacologically Selective Effector Molecules (PSEMs).

View Article and Find Full Text PDF

Purpose: [F]SF51 was previously found to have high binding affinity and selectivity for 18 kDa translocator protein (TSPO) in mouse brain. This study sought to assess the ability of [F]SF51 to quantify TSPO in rhesus monkey brain.

Methods: Positron emission tomography (PET) imaging was performed in monkey brain (n = 3) at baseline and after pre-blockade with the TSPO ligands PK11195 and PBR28.

View Article and Find Full Text PDF

[C] has been advocated as a radioligand for colony-stimulating factor 1 receptor (CSF1R) with the potential for imaging neuroinflammation in human subjects with positron emission tomography (PET). This study sought to prepare fluoro analogs of with higher affinity to provide the potential for labeling with longer-lived fluorine-18 ( = 109.8 min) and for delivery of higher CSF1R-specific PET signal .

View Article and Find Full Text PDF

Introduction: We recently reported C-NR2B-SMe ([S-methyl-C](R,S)-7-thiomethoxy-3-(4-(4-methyl-phenyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol) and its enantiomers as candidate radioligands for imaging the GluN2B subunit within rat N-methyl-D-aspartate receptors. However, these radioligands gave unexpectedly high and displaceable binding in rat cerebellum, possibly due to cross-reactivity with sigma-1 (σ1) receptors. This study investigated C-labeled enantiomers of a close analogue (7-methoxy-3-(4-(p-tolyl)butyl)-2,3,4,5-tetrahydro-1H-benzo[d]azepin-1-ol; NR2B-Me) of C-NR2B-SMe as new candidate GluN2B radioligands.

View Article and Find Full Text PDF

Both cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) convert arachidonic acid to prostaglandin H, which has proinflammatory effects. The recently developed PET radioligand C-PS13 has excellent in vivo selectivity for COX-1 over COX-2 in nonhuman primates. This study sought to evaluate the selectivity of C-PS13 binding to COX-1 in humans and assess the utility of C-PS13 to measure the in vivo potency of nonsteroidal antiinflammatory drugs.

View Article and Find Full Text PDF

Phosphodiesterase-4 (PDE4), which metabolizes the second messenger cyclic adenosine monophosphate (cAMP), has 4 isozymes: PDE4A, PDE4B, PDE4C, and PDE4D. PDE4B and PDE4D have the highest expression in the brain and may play a role in the pathophysiology and treatment of depression and dementia. This study evaluated the properties of the newly developed PDE4B-selective radioligand F-PF-06445974 in the brains of rodents, monkeys, and humans.

View Article and Find Full Text PDF

Because of its excellent ratio of specific to nondisplaceable uptake, the radioligand C-ER176 can successfully image 18-kDa translocator protein (TSPO), a biomarker of inflammation, in the human brain and accurately quantify target density in homozygous low-affinity binders. Our laboratory sought to develop an F-labeled TSPO PET radioligand based on ER176 with the potential for broader distribution. This study used generic C labeling and in vivo performance in the monkey brain to select the most promising among 6 fluorine-containing analogs of ER176 for subsequent labeling with longer-lived F.

View Article and Find Full Text PDF

Purpose: Cyclooxygenase-2 (COX-2) is a target for inflammation and colorectal cancer (CRC). This study evaluated the COX-2 neuro-PET radiopharmaceutical, [C]MC1, in CRC xenograft mice.

Procedures: [C]MC1 was evaluated in ICRscid mice with HT-29 and HCT-116 CRC xenografts, with high and low COX-2 expression, respectively, by immunohistochemistry, cellular uptake, dynamic PET/MR imaging, ex vivo biodistribution, and radiometabolite analysis.

View Article and Find Full Text PDF

Translocator protein 18 kDa (TSPO) is a biomarker of neuroinflammation. [C]ER176 robustly quantifies TSPO in the human brain with positron emission tomography (PET), irrespective of subject genotype. We aimed to develop an ER176 analog with potential for labeling with longer-lived fluorine-18 ( = 109.

View Article and Find Full Text PDF

Previous work found that [C]deschloroclozapine ([C]DCZ) is superior to [C]clozapine ([C]CLZ) for imaging Designer Receptors Exclusively Activated by Designer Drugs (DREADDs). This study used PET to quantitatively and separately measure the signal from transfected receptors, endogenous receptors/targets, and non-displaceable binding in other brain regions to better understand this superiority. A genetically-modified muscarinic type-4 human receptor (hMDi) was injected into the right amygdala of a male rhesus macaque.

View Article and Find Full Text PDF

Background: Previous studies found that the positron emission tomography (PET) radioligand [F]LSN3316612 accurately quantified O-GlcNAcase in human brain using a two-tissue compartment model (2TCM). This study sought to assess kinetic model(s) as an alternative to 2TCM for quantifying [F]LSN3316612 binding, particularly in order to generate good-quality parametric images.

Methods: The current study reanalyzed data from a previous study of 10 healthy volunteers who underwent both test and retest PET scans with [F]LSN3316612.

View Article and Find Full Text PDF

Cyclooxygenase-1 (COX-1) and its isozyme COX-2 are key enzymes in the syntheses of prostanoids. Imaging of COX-1 and COX-2 selective radioligands with positron emission tomography (PET) may clarify how these enzymes are involved in inflammatory conditions and assist in the discovery of improved anti-inflammatory drugs. We have previously labeled the selective high-affinity COX-1 ligand, 1,5-bis(4-methoxyphenyl)-3-(2,2,2-trifluoroethoxy)-1-1,2,4-triazole (PS13), with carbon-11 ( = 20.

View Article and Find Full Text PDF

Positron emission tomography (PET) uses radiotracers to quantify important biochemical parameters in human subjects. A radiotracer arterial input function (AIF) is often essential for converting brain PET data into robust output measures. For radiotracers labeled with carbon-11 (t = 20.

View Article and Find Full Text PDF

Cyclooxygenase-1 (COX-1), a biomarker for neuroinflammation, is implicated in the progression and prognosis of ovarian cancer (OvCa). This study considered the repurposing of C-labeled 1,5-bis(4-methoxyphenyl)-3-(2,2,2-trifluoroethoxy)-1-1,2,4-triazole (C-PS13), a COX-1 PET neuroimaging radiopharmaceutical, in OvCa xenograft mouse models. C-PS13 was evaluated in ICRscid mice with subcutaneous or intraperitoneal human OVCAR-3 OvCa xenografts by dynamic PET/MRI, ex vivo biodistribution, and radiometabolite analysis of plasma and tumor.

View Article and Find Full Text PDF

We aimed to develop effective radioligands for quantifying brain -linked-β--acetyl-glucosamine (-GlcNAc) hydrolase (OGA) using positron emission tomography in living subjects as tools for evaluating drug target engagement. Posttranslational modifications of tau, a biomarker of Alzheimer's disease, by -GlcNAc through the enzyme pair OGA and -GlcNAc transferase (OGT) are inversely related to the amounts of its insoluble hyperphosphorylated form. Increase in tau -GlcNAcylation by OGA inhibition is believed to reduce tau aggregation.

View Article and Find Full Text PDF

Purpose: This study assessed whether the newly developed PET radioligand [C]PS13, which has shown excellent in vivo selectivity in previous animal studies, could be used to quantify constitutive levels of cyclooxygenase-1 (COX-1) in healthy human brain.

Methods: Brain test-retest scans with concurrent arterial blood samples were obtained in 10 healthy individuals. The one- and unconstrained two-tissue compartment models, as well as the Logan graphical analysis were compared, and test-retest reliability and time-stability of total distribution volume (V) were assessed.

View Article and Find Full Text PDF

Background: Cyclooxygenase-2 (COX-2), which is rapidly upregulated by inflammation, is a key enzyme catalyzing the rate-limiting step in the synthesis of several inflammatory prostanoids. Successful positron emission tomography (PET) radioligand imaging of COX-2 in vivo could be a potentially powerful tool for assessing inflammatory response in the brain and periphery. To date, however, the development of PET radioligands for COX-2 has had limited success.

View Article and Find Full Text PDF

McCune-Albright syndrome (MAS) is a mosaic disorder arising from gain-of-function mutations in the gene, which encodes the 3',5'-cyclic adenosine monophosphate (cAMP) pathway-associated G-protein, Gα. Clinical manifestations of MAS in a given individual, including fibrous dysplasia, are determined by the timing and location of the mutation during embryogenesis, the tissues involved, and the role of Gα in the affected tissues. The Gα mutation results in dysregulation of the cAMP signaling cascade, leading to upregulation of phosphodiesterase type 4 (PDE4), which catalyzes the hydrolysis of cAMP.

View Article and Find Full Text PDF

We aimed to develop radioligands for PET imaging of brain phosphodiesterase subtype 4D (PDE4D), a potential target for developing cognition enhancing or antidepressive drugs. Exploration of several chemical series gave four leads with high PDE4D inhibitory potency and selectivity, optimal lipophilicity, and good brain uptake. These leads featured alkoxypyridinyl cores.

View Article and Find Full Text PDF

Background: Previous studies found that [F]LSN3316612 was a promising positron emission tomography (PET) radioligand for imaging O-GlcNAcase in nonhuman primates and human volunteers. This study sought to further evaluate the suitability of [F]LSN3316612 for human clinical research.

Methods: Kinetic evaluation of [F]LSN3316612 was conducted in a combined set of baseline brain scans from 17 healthy human volunteers and test-retest imaging was conducted in 10 of these volunteers; another 6 volunteers had whole-body scans to measure radiation exposure to body organs.

View Article and Find Full Text PDF