Organic/silicon hybrid solar cells have attracted much interest due to their cheap fabrication process and simple device structure. A category of organic substances, Dibenzothiophene-Spirobifluorene-Dithiophene (DBBT-mTPA-DBT), comprises dibenzo [d,b] thiophene and 3-(3-methoxyphenyl)-6-(4-methoxyphenyl)-9-Carbazole, which function as electron donors. In contrast, methanone is an electron acceptor, with an ∆Est of 3.
View Article and Find Full Text PDFNanomaterials (Basel)
September 2021
Nanomaterials and nanostructures provide new opportunities to achieve high-performance optical and optoelectronic devices. Three-dimensional (3D) surfaces commonly exist in those devices (such as light-trapping structures or intrinsic grains), and here, we propose requests for nanoscale control over nanostructures on 3D substrates. In this paper, a simple self-assembly strategy of nanospheres for 3D substrates is demonstrated, featuring controllable density (from sparse to close-packed) and controllable layer (from a monolayer to multi-layers).
View Article and Find Full Text PDFMicromachines (Basel)
September 2019
Organic-inorganic hybrid solar cells composed of p-type conducting polymer poly (3,4-ethylene-dioxythiophene): polystyrenesulfonate (PEDOT: PSS) and n-type silicon (Si) have gained considerable interest in recent years. From this viewpoint, we present an efficient hybrid solar cell based on PEDOT: PSS and the planar Si substrate (1 0 0) with the simplest and cost-effective experimental procedures. We study and optimize the thickness of the PEDOT: PSS film to improve the overall performance of the device.
View Article and Find Full Text PDFThe heterojunction between metal and silicon (Si) is an attractive route to extend the response of Si-based photodiodes into the near-infrared (NIR) region, so-called Schottky barrier diodes. Photons absorbed into a metallic nanostructure excite the surface plasmon resonances (SPRs), which can be damped non-radiatively through the creation of hot electrons. Unfortunately, the quantum efficiency of hot electron detectors remains low due to low optical absorption and poor electron injection efficiency.
View Article and Find Full Text PDF