Polyester based in situ forming implants (ISFIs) are injectable long-acting drug delivery systems that offer a wide range of unique advantages. As a result of these advantages, two relatively high molecular weight, ester terminated grades of poly (D,L-lactide-co-glycolide) (PLGA) and poly(D,L-lactide) (PLA) were evaluated for their ability (i) to form ISFIs loaded with carvedilol, and (ii) to control its release both in vitro and in vivo. At a polymeric concentration of 40% w/w, implant solutions were syringeable, injectable, and able to encapsulate carvedilol to a high degree (encapsulated drug% > 97%).
View Article and Find Full Text PDFHypothyroidism is a chronic condition combated by a daily oral supplementation of levothyroxine. In addition to the need for frequent dosing, oral administration may result in variable absorption of the drug leading to a failure in achieving normal thyroid function. Therefore, the development of a long-acting injectable system capable of delivering the drug is necessary.
View Article and Find Full Text PDFforming depots (ISFDs) represent attractive alternatives to the conventional sustained drug delivery systems. Carvedilol, a short half-life drug used on a daily basis to manage chronic conditions, could benefit from this technology. The aim of this work was to develop, for the first time, a new injectable long-acting carvedilol-ISFD.
View Article and Find Full Text PDFDrug Deliv Transl Res
February 2023
The excellent properties of polyesters combined with their ease of synthesis and modification enabled their wide use in the pharmaceutical industry. This has been translated into the approval of several injectable depots for clinical use. Long-acting depots for leuprolide acetate were among the first and most successful examples including Lupron Depot and ELIGARD.
View Article and Find Full Text PDFWe have previously optimized the internal phase separation process to give rise to aqueous core microcapsules with polymeric shells composed of poly(lactide-co-glycolide) (PLGA) or poly(lactide) (PLA). In this study, the ability of these microcapsules to act as controlled release platforms of the model hydrophilic drug phenobarbital sodium was tested. Furthermore, the effect of the initial amounts of drug and water added to the system during microcapsule synthesis was investigated.
View Article and Find Full Text PDFBackground: Electronic tongue (ET) is a well-established technology that is used to detect the taste of a food or a medicinal product and to differentiate between different products based on their tastes. In addition, it can be used to monitor environmental parameters and biochemical and biological processes.
Purpose: This study aims to assess any correlation between the results of pharmacopeial quality control (ie, assay, impurities, and dissolution, etc) and ET analysis for reconstituted cefdinir (CR) suspension over 10 days (ie, shelf-life).
The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Herein, the synergistic antibacterial activity of silver nanoparticles and hydrogen peroxide combination is reported. Unlike the bacteriostatic or slightly bactericidal activity achieved by using each agent alone, using these two agents in combination, even at relatively low concentrations, resulted in complete eradication of both the Gram negative Escherichia coli and the Gram positive Staphylococcus aureus in short treatment times indicating a clear synergistic effect between them.
View Article and Find Full Text PDFWe report a simple surface functionalization of glutathione-capped gold nanoclusters by hydrophobic ion pairing with alkylamine followed by a complete phase transfer to various organic solvents with maintained colloidal stability and photoluminescence properties. The described surface hydrophobication enables efficient encapsulation of gold nanoclusters into PLGA nanocarriers allowing their visualization inside cultured cells using confocal fluorescent microscopy. The simplicity and efficiency of the described protocols should extend the biomedical applications of these metallic nanoclusters as a fluorescent platform to label hydrophobic polymeric nanocarriers beyond conventional organic dyes.
View Article and Find Full Text PDFPoly(d,l-lactide-co-glycolide) (PLGA) and poly(d,l-lactide) (PLA) polymers were used successfully in the preparation of polymer shell microcapsules with mononuclear aqueous cores by the internal phase separation method. These microcapsules were prepared with varying amounts of polymer and water and loaded with fluorescein sodium as a model water soluble drug. Evaluation of drug loading and encapsulation efficiency reveals an optimum polymer to water ratio of around 1:3.
View Article and Find Full Text PDFThe ability to control the internal core architecture of polymeric microcapsules has a direct impact on their applications. However, this task, especially to produce microcapsules with a high percentage of mononuclear aqueous cores, proved to be challenging. In this work, and in continuation to our previous studies, we report a facile protocol to prepare poly(D,L-lactide-co-glycolide) (PLGA) microcapsules with unprecedented percentage (almost 100%) of mononuclear aqueous cores by the internal phase separation method via adding alcohols.
View Article and Find Full Text PDFMaintaining colloidal stability of nanoparticles in suspensions is a major challenge. Therefore, freeze-drying (lyophilization) is recently proposed to preserve colloidal stability of nanoparticles through maintaining them in a solid state. However, freeze-drying would itself induce nanoparticle aggregation unless proper formulation with a careful selection of cryoprotectants is considered.
View Article and Find Full Text PDFPreviously, our group employed the internal phase separation method to produce aqueous core-PLGA [poly(d,l-lactide-co-glycolide)] shell microcapsules with polynuclear core morphologies. This report describes the preparation of the more desired and challenging architecture with mononuclear cores. Optimization of formulation parameters including (1) varying the composition of the internal phase and (2) incorporating selected organic solvents (dichloromethane, chloroform, methanol, and acetonitrile) into the internal phase was systematically evaluated.
View Article and Find Full Text PDFThe preparation of microcapsules consisting of poly(D,L-lactide-co-glycolide) (PLGA) polymer shell and aqueous core is a clear challenge and hence has been rarely addressed in literature. Herein, aqueous core-PLGA shell microcapsules have been prepared by internal phase separation from acetone-water in oil emulsion. The resulting microcapsules exhibited mean particle size of 1.
View Article and Find Full Text PDFCalcium alginate nanoparticles (NPs) suffer from sub-optimal stability in bio-relevant media leading to low drug encapsulation efficiency and uncontrolled release profiles. To sort out these drawbacks, a novel approach is proposed herein based on introducing tannic acid into these NPs to act as a bridging cross-linking aid agent. Calcium-alginate NPs were prepared by the ionotropic gelation method and loaded with diltiazem hydrochloride as a model drug.
View Article and Find Full Text PDFFor various applications of gold nanotechnology, long-term nanoparticle stability in solution is a major challenge. Lyophilization (freeze-drying) is a widely used process to convert labile protein and various colloidal systems into powder for improved long-term stability. However, the lyophilization process itself may induce various stresses resulting in nanoparticle aggregation.
View Article and Find Full Text PDFContext: The excellent gelling and safety profiles of alginic acid combined, however, with drawbacks of its ionotropically crosslinked beads (i.e. their quick release of loaded drugs) prompted us to chemically modify alginic acid.
View Article and Find Full Text PDFPolymer particles consisting of a biodegradable poly[lactide-co-glycolide] (PLGA) core and a thermoresponsive shell have been formulated to encapsulate the dye rhodamine 6G and the potent cytotoxic drug paclitaxel. Cellular uptake of these particles is significantly enhanced above the thermal transition temperature (TTT) of the polymer shells in the human breast carcinoma cell line MCF-7 as determined by flow cytometry and fluorescence microscopy. Paclitaxel-loaded particles display reduced and enhanced cytotoxicity below and above the TTT respectively compared to unencapsulated drug.
View Article and Find Full Text PDFThe ability to deliver genetic material for therapy remains an unsolved challenge in medicine. Natural gene carriers, such as viruses, have evolved sophisticated mechanisms and modular biopolymer architectures to overcome these hurdles. Here we describe synthetic multicomponent materials for gene delivery, designed with features that mimic virus modular components and which transfect specific cell lines with high efficacy.
View Article and Find Full Text PDFMany difficulties in treating cancer arise from the problems in directing highly cytotoxic agents to the deseased tissues, cells and intracellular compartments. Many drug delivery systems have been devised to address this problem, including those that show a change in properties in response to a temperature stimulus. In particular, colloidal materials based on thermoresponsive polymers offer a means to transport drugs selectively into tumour tissues that are hyperthermic, either intrinsically or through the application of clinical procedures such as localised heating.
View Article and Find Full Text PDFResponsive polymeric nanoparticles composed of hybrid block co-polymers were prepared from biocompatible components that displayed rapid, tunable and multiply reversible transitions in response to change of temperature.
View Article and Find Full Text PDF