Publications by authors named "Samer Al-Gharabli"

To design new material for blood-related applications one needs to consider various factors such as cytotoxicity, platelet adhesion, or anti-thrombogenic properties. The aim of this work is the design of new, highly effective materials possessing high blood compatibility. To do this, the new composites based on the poly(vinylidene fluoride) (PVDF) support covered with a single-walled carbon nanohorns (CNHs) layer were prepared.

View Article and Find Full Text PDF

Materials based on PVDF with desirable and controllable features were successfully developed. The chemistry and roughness were adjusted to produce membranes with improved transport and separation properties. Membranes were activated using the novel piranha approach to generate OH-rich surfaces, and finally furnished with epoxy and long-alkyl moieties via stable covalent attachment.

View Article and Find Full Text PDF

Enzyme immobilization is a well-known method for the improvement of enzyme reusability and stability. To achieve very high effectiveness of the enzyme immobilization, not only does the method of attachment need to be optimized, but the appropriate support must be chosen. The essential necessities addressed to the support applied for enzyme immobilization can be focused on the material features as well as on the stability and resistances in certain conditions.

View Article and Find Full Text PDF

The interaction between meloxicam and sulfonatocalix [4] naphthalene was investigated to improve the meloxicam solubility and its dissolution performance. Solubility behavior was investigated in distilled water (DW) and at different pH conditions. Besides, solid systems were prepared in a 1:1 molar ratio using coevaporate, kneading, and simple physical mixture techniques.

View Article and Find Full Text PDF

Highly effective, hybrid separation materials for water purification were generated following a bioinspired system available in nature. The desert beetle was the inspiration for the generation of separation materials. Using the hydrophobic poly(vinylidene fluoride) (PVDF) membrane as the basis, the membrane was first activated and then furnished with silane-based linkers, and the covalent anchoring of chitosan was successfully accomplished.

View Article and Find Full Text PDF

A highly effective method was developed to functionalize ceramic supports (AlO powders and membranes) using newly synthesized spacer molecules. The functionalized materials were subsequently utilized for lipase B enzyme immobilization. The objective is to systematically evaluate the impact of various spacer molecules grafted onto the alumina materials will affect both the immobilization of the enzymes and specific material surface properties, critical to enzymatic reactors performance.

View Article and Find Full Text PDF

This paper describes the development and characterisation of a novel, electrical impedance spectroscopy-based (EIS) immunosensor array for point-of-care applications. EIS is a highly sensitive, label-free, real time technique suitable for single use, point-of-care cardiac marker detection devices. However, the underlying source of the observed change in EIS immunoassay response has not been well characterised or understood.

View Article and Find Full Text PDF

In this project, a microfluidic device for blood separation will be designed and tested in order to separate plasma from whole blood for diagnostic purposes. The design will be based on previously implemented designs that will be further discussed in the next sections. When designing microfluidic devices, it is essential to consider the different physical phenomena that arise from switching from the macro scale to the micro scale.

View Article and Find Full Text PDF

The main goal of this work was to establish a hybrid device incorporating an electrochemical-based transducer on a conventional lateral flow assay strip in order to perform an on-chip fast testing method for the detection of various bio-analyses. In this context, the expected development of the digital lateral-flow immunoassay to be considered a reliable low-cost instrument improves the future of the very simple and flexible approach oflateral-flow assays. It is anticipated to achieve a digital quantitative lateral-flow immunoassay by exploring the electrochemical transducers alongwith recognition elements for digitization of commercially available rapid tests.

View Article and Find Full Text PDF

Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs) were covalently grafted onto the surface via an amide building block.

View Article and Find Full Text PDF

In this research a new method of wheelchair control using a Brain Computer Interface (BCI) is proposed, in an attempt to bridge the gap between in-lab and real life applications, we believe it would provide a high level control over the BCI instead of the normal low level commands. It is anticipated to emphasis on mu rhythm to provide the control signals. The wheelchair is equipped with a mapping system, which scans the area and provides a map containing information about the user's current location and next possible destinations, then provides an optimized list of possible trajectories to reach the destination.

View Article and Find Full Text PDF

Four main tasks were presented: (i) ceramic membrane functionalization (TiO 5 kDa and 300 kDa), (ii) extended material characterization (physicochemistry and tribology) of pristine and modified ceramic samples, (iii) evaluation of chemical and mechanical stability, and finally (iv) assessment of membrane efficiency in vacuum membrane distillation applied for volatile organic compounds (VOCs) removal from water. Highly efficient molecular grafting with four types of perfluoroalkylsilanes and one nonfluorinated agent was developed. Materials with controllable tribological and physicochemical properties were achieved.

View Article and Find Full Text PDF

Taraxacum officinale has been used in Jordan folk medicine to treat male infertility. A recent study has proved a contradictory effect of the whole plant aqueous extract. The aim of the current study was to determine if the leaves of T.

View Article and Find Full Text PDF

This paper presents the employment of LEGO Mindstorms NXT robotics as core component of low cost multidisciplinary platform for assisting elderly and visually impaired people. LEGO Mindstorms system offers a plug-and-play programmable robotics toolkit, incorporating construction guides, microcontrollers and sensors, all connected via a comprehensive programming language. It facilitates, without special training and at low cost, the use of such device for interpersonal communication and for handling multiple tasks required for elderly and visually impaired people in-need.

View Article and Find Full Text PDF

Excilamps are mercury-free gas-discharge sources of non-coherent VUV or UV radiation with high radiant power and a long lifetime. The most efficient excilamp that is currently available on the market is a VUV xenon excilamp system (Xe2(*)-excimer lamp, λ(max) = 172 nm) with a stated radiant efficiency η of 40% at an electrical input power P(el) of 20 W, 50 W or 100 W. In this paper, the use of this highly efficient Xe2(*)-excilamp (P(el) = 20 W) for water treatment is demonstrated using a recirculating laboratory photoreactor system with negative radiation geometry.

View Article and Find Full Text PDF

Structure prediction of proteins is considered a limiting step and determining factor in drug development and in the introduction of new therapies. Since the 3D structures of proteins determine their functionalities, prediction of dihedral angles remains an open and important problem in bioinformatics, as well as a major step in discovering tertiary structures. This work presents a method that predicts values of the dihedral angles φ and ψ for enzyme loops based on data derived from amino acid sequences.

View Article and Find Full Text PDF

A polymer-supported route for the synthesis of sphingosine derivatives is presented based on the C-acylation of polymeric phosphoranylidene acetates with an Fmoc-protected amino acid. The approach enables the flexible variation of the sphingosine tail through a deprotection-decarboxylation sequence followed by E-selective Wittig olefination cleavage. d-Erythro-sphingosine analogs have been synthesized by diastereoselective reduction of the keto group employing LiAlH(O-tBu)3 as reducing agent.

View Article and Find Full Text PDF

Protocols for solid-phase syntheses of soluble peptidyl phosphoranes are presented. Various supported phosphoranylidene acetates were prepared on Rink amide or via alkylation of trialkyl- and triarylphosphines with bromoacetyl Wang ester. C-Acylation was conducted racemization-free with activated Fmoc-amino acids, followed by SPPS (solid-phase peptide synthesis).

View Article and Find Full Text PDF

SARS coronavirus main protease (SARS-CoV M(pro)) is essential for the replication of the virus and regarded as a major antiviral drug target. The enzyme is a cysteine protease, with a catalytic dyad (Cys-145/His-41) in the active site. Aldehyde inhibitors can bind reversibly to the active-site sulfhydryl of SARS-CoV M(pro).

View Article and Find Full Text PDF

Fourier transformation infrared (FT-IR) spectroscopy has been used to measure glucose concentrations in different matrices. The accuracy of the FT-IR technique does not meet the requirements of medical applications, so we have developed a new, efficient and precise method based on attenuated total reflectance coupled with wavelet transformation (ATR-WT-IR). One thousand interferograms, divided into training- and testing-sets, have been recorded from four glucose concentrations using an ATR-IR unit.

View Article and Find Full Text PDF

A method for the parallel solid-phase synthesis of peptide aldehydes has been developed. Protected amino acid aldehydes obtained by the racemization-free oxidation of amino alcohols with Dess-Martin periodinane were immobilized on threonyl resins as oxazolidines. Following Boc protection of the ring nitrogen to yield the N-protected oxazolidine linker, peptide synthesis was performed efficiently on this resin.

View Article and Find Full Text PDF