Background: Microelectrical Impedance Spectroscopy (µEIS) is a tiny device that utilizes fluid as a working medium in combination with biological cells to extract various electrical parameters. Dielectric parameters of biological cells are essential parameters that can be extracted using µEIS. µEIS has many advantages, such as portability, disposable sensors, and high-precision results.
View Article and Find Full Text PDFAn electric pulse with a sufficient amplitude can lead to electroporation of intracellular organelles. Also, the electric field can lead to electrofusion of the neighboring cells. In this paper, a finite element mathematical model was used to simulate the distribution, radius, and density of the pores.
View Article and Find Full Text PDFAdipose stem cells (ASCs) have recently emerged as a more viable source for clinical applications, compared to bone-marrow mesenchymal stromal cells (BM-MSCs) because of their abundance and easy access. In this study we evaluated the regenerative potency of ASCs compared to BM-MSCs. Furthermore, we compared the dielectric and electro-kinetic properties of both types of cells using a novel Dielectrophoresis (DEP) microfluidic platform based on a printed circuit board (PCB) technology.
View Article and Find Full Text PDF