Publications by authors named "Sameera Sansare"

Respiratory syncytial virus (RSV) is the most common cause of viral bronchiolitis among children worldwide, yet there is no vaccine for RSV disease. This study investigates the potential of cube and sphere-shaped cerium oxide nanoparticles (CNP) to modulate reactive oxygen (ROS) and nitrogen (RNS) species and immune cell phenotypes in the presence of RSV infection and . Cube and sphere-shaped CNP were synthesized by hydrothermal and ultrasonication methods, respectively.

View Article and Find Full Text PDF

Although bulk biotherapeutics are often frozen during fill finish and shipping to improve their stability, they can undergo degradation leading to losses in biological activity during sub-optimal freeze-thaw (F/T) process. Except for a few small-scale studies, the relative contribution of various F/T stresses to the instability of proteins has not been addressed. Thus, the objective of this study was to determine the individual contributions of freeze-concentration, ice surface area, and processing time to protein destabilization at a practical manufacturing-scale.

View Article and Find Full Text PDF

Fluidized bed dryer often used in the pharmaceutical industry for drying of wet granules. Coupled computational fluid dynamics (CFD) - discrete element method (DEM) is frequently used to model the drying process because of its ability to obtain the relevant information at the particle level. However, it becomes almost impossible to model the industrial scale fluidized bed dryer using the coupled CFD-DEM method because of the presence of large number of particles [Formula: see text].

View Article and Find Full Text PDF

The fluidized bed is an essential and standard equipment in the field of process development. It has a wide application in various areas and has been extensively studied. This review paper aims to discuss computational modeling of a fluidized bed with a focus on pharmaceutical applications.

View Article and Find Full Text PDF

Pharmaceutical applications of the 3D printing process have recently matured, followed by the FDA approval of Spritam, the first commercial 3D printed dosage form. Due to being a new technology in the conventional dosage formulation field, there is still a dearth of understanding in the 3D printing process regarding the effect of the raw materials on the printed dosage forms and the plausibility of using this technology in dosage development beyond the conventional ways. In this review, the powder-based binder jet 3D printing (BJ3DP) process and its pharmaceutical applications have been discussed, along with a perspective of the formulation development step.

View Article and Find Full Text PDF

The current study utilized an artificial neural network (ANN) to generate computational models to achieve process optimization for a previously developed continuous liposome manufacturing system. The liposome formation was based on a continuous manufacturing system with a co-axial turbulent jet in a co-flow technology. The ethanol phase with lipids and aqueous phase resulted in liposomes of homogeneous sizes.

View Article and Find Full Text PDF

In this study, a pre-screening test has been developed for the binder-jet 3D printing process (BJ3DP) which has been validated using statistical analysis. The pre-screening test or drop test has been adapted from the wet granulation field and modified later on to be used for tablet manufacturing in BJ3DP. Initially, a total of eight powders and ten water-based binder solutions have been introduced in the preliminary test to understand the powder-binder interactions.

View Article and Find Full Text PDF

Triboelectric charging is defined as the phenomenon of charge transfer between two different material surfaces when they are brought into contact and separated. The focus of this research is the development of a Discrete Element Method (DEM) based simulation model to predict tribocharging during hopper discharge. Due to decreased particle-wall interactions and reduced particle wall contact times, net charges generated during hopper discharge are low.

View Article and Find Full Text PDF

The present study focuses on the implementation of a modified simplex centroid statistical design to predict the triboelectrification phenomenon in pharmaceutical mixtures. Two drugs (Ibuprofen and Theophylline), 2 excipients (lactose monohydrate and microcrystalline cellulose/MCC), and 2 blender wall materials (aluminum and poly-methyl methacrylate) were studied to identify the trends in charge transfer in pharmaceutical blends. The statistical model confirmed the excipient-drug interactions, irrespective of the blender wall materials, as the most significant factor leading to reduced charging.

View Article and Find Full Text PDF