Publications by authors named "Sameer Urgaonkar"

Targeted concurrent inhibition of intestinal drug efflux transporter P-glycoprotein (P-gp) and drug metabolizing enzyme cytochrome P450 3A4 (CYP3A4) is a promising approach to improve oral bioavailability of their common substrates such as docetaxel, while avoiding side effects arising from their pan inhibitions. Herein, we report the discovery and characterization of potent small molecule inhibitors of P-gp and CYP3A4 with encequidar (minimally absorbed P-gp inhibitor) as a starting point for optimization. To aid in the design of these dual inhibitors, we solved the high-resolution cryo-EM structure of encequidar bound to human P-gp.

View Article and Find Full Text PDF

Many chemotherapeutics, such as paclitaxel, are administered intravenously as they suffer from poor oral bioavailability, partly because of efflux mechanism of P-glycoprotein in the intestinal epithelium. To date, no drug has been approved by the U.S.

View Article and Find Full Text PDF

Here we report the discovery of tetracyclic benzothiazepines (BTZs) as highly potent and selective antimalarials along with the identification of the Plasmodium falciparum cytochrome bc(1) complex as the primary functional target of this novel compound class. Investigation of the structure activity relationship within this previously unexplored chemical scaffold has yielded inhibitors with low nanomolar activity. A combined approach employing genetically modified parasites, biochemical profiling, and resistance selection validated inhibition of cytochrome bc(1) activity, an essential component of the parasite respiratory chain and target of the widely used antimalarial drug atovaquone, as the mode of action of this novel compound class.

View Article and Find Full Text PDF

This study characterizes aminoindole molecules that are analogs of Genz-644442. Genz-644442 was identified as a hit in a screen of ~70,000 compounds in the Broad Institute's small-molecule library and the ICCB-L compound collection at Harvard Medical School. Genz-644442 is a potent inhibitor of Plasmodium falciparum in vitro (50% inhibitory concentrations [IC₅₀s], 200 to 285 nM) and inhibits P.

View Article and Find Full Text PDF

The development of a concise strategy to access 2-amino-3-hydroxy-indoles, which are disclosed as novel antimalarials with potent in vivo activity, is reported. Starting from isatins the target compounds are synthesized in 2 steps and in good yields via oxoindole intermediates by employing tert-butyldimethylsilyl amine (TBDMSNH(2)) as previously unexplored ammonia equivalent.

View Article and Find Full Text PDF

A library of approximately 2000 small molecules biased toward inhibition of histone deacetylases was assayed for antimalarial activity in a high-throughput P. falciparum viability assay. Active compounds were cross-analyzed for induction of histone hyperacetylation in a human myeloma cell line to identify HDAC inhibitors with selectivity for P.

View Article and Find Full Text PDF

Ethanol production from corn starch in the corn dry milling process leaves Distillers' Dry Grains and Solubles (DDGS) as a major by-product from which additional ethanol may be economically obtained from its glucan content. A challenge in processing the cellulose content of this material lies in its extensive inter-cellulose chain hydrogen bonding, which inhibits access of enzymes capable of cleaving glycosidic bonds, a transformation required for providing fermentable sugars. The phosphitylation of cellulosic OH groups using a reactive bicyclic phosphite ester is utilized to disrupt cellulosic hydrogen bonds, thus providing access to cellulose chains for further processing.

View Article and Find Full Text PDF

A new small molecule inhibitor of bacterial cell division has been discovered using a high-throughput screen in Escherichia coli. Although the lead screening hit (534F6) exhibited modest inhibition of the GTPase activity of FtsZ (20+/-5% at 100microM of compound), a primary target for bacterial cell division inhibitors, several analogs caused potent bacterial growth inhibition with negligible antagonism of FtsZ GTPase activity. A library of analogs has been prepared and several alkyne-tagged photoaffinity probes have been synthesized for use in experiments to elucidate the primary target of this compound.

View Article and Find Full Text PDF

A short synthesis of Kaempferitrin (1), a 3,7-diglycosylflavone, is reported. Key features include the synthesis of a protected form of kaempferol in which all four hydroxy groups are differentiated and the first bis-glycosylation of a dihydroxyflavone. This synthesis will allow the preparation of derivatives for further explorations into the origins of this compound's biological activity.

View Article and Find Full Text PDF

[chemical structure: see text]. Two natural products have been synthesized using a ZnCl2-mediated benzylic coupling reaction. Both are potent inhibitors of the GTPase activity of FtsZ, a highly conserved protein that is essential for bacterial cytokinesis.

View Article and Find Full Text PDF

[reaction: see text] A highly efficient synthesis of enamines and imines by Pd-catalyzed amination of vinyl bromides or chlorides with amines is described using the Pd2(dba)3/P(i-BuNCH2CH2)3N catalyst system.

View Article and Find Full Text PDF

Native cyclodextrin-based columns are particularly useful for the analysis of oligosaccharides because the retention of these carbohydrates is based mainly on the hydrogen bonding interactions of oligosaccharide hydroxyl groups with the stationary phase. Thus, the retention time predictably increases with the number of analyte hydroxyl groups, which corresponds to the elongation of the oligosaccharide chain. High-performance liquid chromatography (HPLC) coupled to electrospray ionization (ESI) mass spectrometry (MS) was used for the separation and characterization of underivatized oligosaccharide mixtures.

View Article and Find Full Text PDF

[reaction: see text]. The nucleophilic aromatic substitution reaction between electron-deficient aryl fluorides and aryl TBDMS (or TMS) ethers has been shown to be efficiently promoted by proazaphosphatranes such as P(i-BuNCH(2)CH(2))(3)N (3). Excellent yields of diaryl ether products were obtained under unusually mild conditions.

View Article and Find Full Text PDF

Proazaphosphatrane ligands in combination with Pd(2)(dba)(3) generate highly active catalysts for Buchwald-Hartwig amination of aryl chlorides. In particular, commercially available P(i-BuNCH(2)CH(2))(3)N is a highly general and efficient ligand, allowing the coupling of an electronically diverse set of aryl chlorides, including chloropyridines, with a wide variety of amines using 1 mol % of Pd at 100 degrees C. Either a 1:1 or 2:1 ratio of ligand to Pd was found to be effective.

View Article and Find Full Text PDF

A family of proazaphosphatrane ligands [P(RNCH2CH2)2N(R'NCH2CH2): R = R' = i-Bu, 1; R = Bz, R' = i-Bu, 3; R = R' = Bz, 4] for palladium-catalyzed Stille reactions of aryl chlorides is described. Catalysts derived from ligands 1 and 4 efficiently catalyze the coupling of electronically diverse aryl chlorides with an array of organotin reagents. The catalyst system based on the ligand 3 is active for the synthesis of sterically hindered biaryls (di-, tri-, and tetra-ortho substituted).

View Article and Find Full Text PDF

Conditions for an efficient ligand-, copper-, and amine-free palladium-catalyzed Sonogashira reaction of aryl iodides and bromides with terminal alkynes have been developed. Critical to the success of this new protocol is the use of tetrabutylammonium acetate as the base. Noteworthy features of this method are room-temperature conditions and the tolerance of a broad range of functional groups in both reaction partners.

View Article and Find Full Text PDF

[reaction: see text] The Pd(2)(dba)(3)/P(i-BuNCH(2)CH(2))(3)N (1d) catalyst system is highly effective for the Stille cross-coupling of aryl chlorides with organotin compounds. This method represents only the second general method for the coupling of aryl chlorides. Other proazaphosphatranes possessing benzyl substituents also generate very active catalysts for Stille reactions.

View Article and Find Full Text PDF

The new bicyclic triaminophosphine ligand P(i-BuNCH2)3CMe (3) has been synthesized in three steps from commercially available materials and its efficacy in palladium-catalyzed reactions of aryl halides with an array of amines has been demonstrated. Electron-poor, electron-neutral, and electron-rich aryl bromides, chlorides, and iodides participated in the process. The reactions encompassed aromatic amines (primary or secondary) and secondary amines (cyclic or acyclic).

View Article and Find Full Text PDF

[reaction: see text] Palladium-catalyzed amination reactions of aryl chlorides with amines proceeded in the presence of the bicyclic triaminophosphine P[N(i-Bu)CH(2)CH(2)](3)N to afford the corresponding arylamines in good to excellent yields. Electron-poor, electron-neutral, and electron-rich aryl chlorides all participated with equal ease.

View Article and Find Full Text PDF

It is shown that the bicyclic triaminophosphine P(i-BuNCH2CH2)3N serves as an effective ligand for the palladium-catalyzed amination of a wide array of aryl bromides and iodides. Other bicyclic or acyclic triaminophosphines, even those of similar basicity and/or bulk, were inferior.

View Article and Find Full Text PDF