Publications by authors named "Sameer Hassan"

Spiders produce nature's toughest fiber using renewable components at ambient temperatures and with water as solvent, making it highly interesting to replicate for the materials industry. Despite this, much remains to be understood about the bioprocessing and composition of spider silk fibers. Here, we identify 18 proteins that make up the spiders' strongest silk type, the major ampullate fiber.

View Article and Find Full Text PDF

Climate change is dramatically increasing the overall area of saline soils around the world, which is increasing by approximately two million hectares each year. Soil salinity decreases crop yields and, thereby, makes farming less profitable, potentially causing increased poverty and hunger in many areas. A solution to this problem is increasing the salt tolerance of crop plants.

View Article and Find Full Text PDF

Large and rapidly increasing areas of salt-affected soils are posing major challenges for the agricultural sector. Most fields used for the important food crop (wheat) are expected to be salt-affected within 50 years. To counter the associated problems, it is essential to understand the molecular mechanisms involved in salt stress responses and tolerance, thereby enabling their exploitation in the development of salt-tolerant varieties.

View Article and Find Full Text PDF

The functional significance of the HIV-1 Antisense Protein (ASP) has been a paradox since its discovery. The expression of this protein in HIV-1-infected cells and its involvement in autophagy, transcriptional regulation, and viral latency have sporadically been reported in various studies. Yet, the definite role of this protein in HIV-1 infection remains unclear.

View Article and Find Full Text PDF

MSALigMap (Multiple Sequence Alignment Ligand Mapping) is a tool for mapping active-site amino-acid residues that bind selected ligands on to target protein sequences of interest. Users can also provide novel sequences (unavailable in public databases) for analysis. MSALigMap is written in Python.

View Article and Find Full Text PDF
Article Synopsis
  • Proteins can self-assemble into harmful structures like amyloid fibrils, but molecular chaperones, such as the BRICHOS domain, can help prevent these disease-causing aggregates.
  • The BRICHOS domain has different effects on amyloid neurotoxicity and fibril formation based on a specific conserved aspartate residue, while its ability to prevent amorphous protein aggregation remains unaffected by mutations.
  • The conserved aspartate is critical for structural flexibility and its properties may be influenced by pH levels, indicating that the effectiveness of chaperones can vary under different physiological conditions.
View Article and Find Full Text PDF

Interaction between protein and ligands are ubiquitous in a biological cell, and understanding these interactions at the atom level in protein-ligand complexes is crucial for structural bioinformatics and drug discovery. Here, we present a web-based protein-ligand interaction application named Ligand Binding Site Comparison (LiBiSCo) for comparing the amino acid residues interacting with atoms of a ligand molecule between different protein-ligand complexes available in the Protein Data Bank (PDB) database. The comparison is performed at the ligand atom level irrespectively of having binding site similarity or not between the protein structures of interest.

View Article and Find Full Text PDF

NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is a key enzyme of chlorophyll biosynthesis in angiosperms. It is one of few known photoenzymes, which catalyzes the light-activated trans-reduction of the C17-C18 double bond of Pchlide's porphyrin ring. Due to the light requirement, dark-grown angiosperms cannot synthesize chlorophyll.

View Article and Find Full Text PDF

Soil salinity and the resulting salt stress it imposes on crop plants is a major problem for modern agriculture. Understanding how salt tolerance mechanisms in plants are regulated is therefore important. One regulatory mechanism is the APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factor family, including dehydration responsive element binding (DREB) transcription factors.

View Article and Find Full Text PDF

The World Health Organization (WHO) has developed specific guidelines for critical concentrations (CCs) of antibiotics used for tuberculosis (TB) treatment, which is universally followed for drug susceptibility testing (DST) of clinical specimens. However, the CC of drugs can differ significantly among the mycobacterial species based on the population, geographic location, and the prevalence of the infecting strain in a particular area. The association between CC and the minimal inhibitory concentration (MIC) of anti-TB drugs is poorly understood.

View Article and Find Full Text PDF

Background: Mycobacterium tuberculosis resides inside host macrophages during infection and adapts to resilient stresses generated by the host immune system. As a response, M. tuberculosis codes for short-chain dehydrogenases/reductases (SDRs).

View Article and Find Full Text PDF

Background: Triticum aestivum (wheat) is one of the world's oldest crops and has been used for >8000 years as a food crop in North Africa, West Asia and Europe. Today, wheat is one of the most important sources of grain for humans, and is cultivated on greater areas of land than any other crop. As the human population increases and soil salinity becomes more prevalent, there is increased pressure on wheat breeders to develop salt-tolerant varieties in order to meet growing demands for yield and grain quality.

View Article and Find Full Text PDF

Soil salinization is an increasing global threat to economically important agricultural crops such as bread wheat (Triticum aestivum L.). A main regulator of plants' responses to salt stress is WRKY transcription factors, a protein family that binds to DNA and alters the rate of transcription for specific genes.

View Article and Find Full Text PDF

Isoniazid is an important antitubercular molecule identified as a drug of choice in tuberculosis treatment. As such, INH is an inactive prodrug; it acquires an active conformation by forming an adduct with NAD. The adduct targets inhA protein, a reductase responsible for fatty acid chain elongation in the cell wall of .

View Article and Find Full Text PDF

Human papillomavirus (HPV) is a viral infection with skin-to-skin based transmission mode. HPV annually caused over 500,000 cancer cases including cervical, anogenital and oropharyngeal cancer among others. HPV vaccination has become a public-health concern, worldwide, to prevent the cases of HPV infections including precancerous lesions, cervical cancers, and genital warts especially in adolescent female and male population by launching national programs with international alliances.

View Article and Find Full Text PDF

HIV protease, an essential enzyme for viral particle maturation, is an important drug target of HIV. Its structural conformation is a key determinant of both biological function as well as efficient binding of protease inhibitor molecules. In the present study we analyzed 471 crystal structures of HIV-1 protease to understand the conformational changes induced by mutations or binding of various ligands and substrates.

View Article and Find Full Text PDF

Codon usage has been identified as one of the most important factors that influence gene expression. The frequencies with which the different codons are used vary significantly between different organisms and also between the genes within the same organism. HIV has a remarkable nucleotide composition with an above average percentage of "A" nucleotides resulting in a codon usage pattern different from that of the human host.

View Article and Find Full Text PDF

Lipoic acid synthase (LIAS) is an iron-sulfur cluster mitochondrial enzyme which catalyzes the final step in the de novo pathway for the biosynthesis of lipoic acid, a potent antioxidant. Recently there has been significant interest in its role in metabolic diseases and its deficiency in LIAS expression has been linked to conditions such as diabetes, atherosclerosis and neonatal-onset epilepsy, suggesting a strong inverse correlation between LIAS reduction and disease status. In this study we use a bioinformatics approach to predict its structure, which would be helpful to understanding its role.

View Article and Find Full Text PDF
Article Synopsis
  • * Analysis of HIV-2 genes showed that its tat gene has a higher effective number of codons (ENC), indicating lower expression levels of the tat protein compared to HIV-1.
  • * The study suggests that differences in codon usage and genetic composition might help HIV-2 adapt and result in its reduced pathogenicity compared to HIV-1.
View Article and Find Full Text PDF

Mycobacteriophages produce lysins that break down the host cell wall at the end of lytic cycle to release their progenies. The ability to lyse mycobacterial cells makes the lysins significant. Mycobacteriophage Che12 is the first reported temperate phage capable of infecting and lysogenising Mycobacterium tuberculosis.

View Article and Find Full Text PDF

Rifampicin (RIF) an essential first-line anti-tuberculosis (TB) drug, resistance to RIF is a potential threat to TB control program and widely considered as surrogate marker for detection of multi-drug resistant-TB (MDR-TB), molecular understanding of which is the utmost need of the hour. Mutations at RIF resistance-determining region (RRDR) of 81-bp in the rpoB gene coding for β subunit or RpoB protein is the major cause of RIF resistance in Mycobacterium tuberculosis (MTB). Mutation at positions 526 and 531 are generally associated with high-level RIF resistance and at codons 516, 521 and 533 with low-level resistance.

View Article and Find Full Text PDF

Protein-protein interactions control the diverse and essential molecular processes inside the cell. To maintain the cellular physiology, protein kinases not only signal their substrates through reversible phosphorylation, but they also physically interact with them. PknI, a serine/threonine protein kinase of Mycobacterium tuberculosis is known to be important for cellular homoeostasis.

View Article and Find Full Text PDF

Initiation of the Tuberculosis Structural Consortium has resulted in the expansion of the Mycobacterium tuberculosis (MTB) protein structural database. Currently, 969 experimentally solved structures are available for 354 MTB proteins. This includes multiple crystal structures for a given protein under different functional conditions, such as the presence of different ligands or mutations.

View Article and Find Full Text PDF

Tuberculosis (TB) still remains a major challenging infectious disease. The increased rate of emergence of multi-drug resistant and extensively-drug resistant strains of the organism has further complicated the situation, resulting in an urgent need for new anti-TB drugs. Antimycobacterial activity of Andrographis paniculata was evaluated using a rapid LRP assay and the probable targets were identified by docking analysis.

View Article and Find Full Text PDF

Tuberculosis is caused by Mycobacterium tuberculosis, an intracellular pathogen. PknI is one of the 11 functional Serine/Threonine Protein Kinases which is predicted to regulate the cell division of M. tuberculosis.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9rcda8s4hdds3227951s401b94jh9lu6): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once