For decades, the inherently reflective nature of metallic electromagnetic (EM) shields and their induced secondary EM pollution have posed significant challenges for sensitive electronics. While numerous efforts have been made to develop superior EM shielding systems, the issue of reflection dominancy in metallic substrates remains unresolved. Herein, we addressed this long-lasting obstacle by pairing metallic shields with ultra-lightweight (density of 3.
View Article and Find Full Text PDFInterfacial assemblies formed by colloidal complexation are effective in multiphase stabilization, as shown in structured liquids and Pickering emulgels. Herein, we demonstrate a type of biobased colloidal system that spontaneously stabilizes an organic phase in a continuous hydrogel phase. Specifically, a triterpene extracted from bark (betulin, BE) is added to an organic phase containing a coniferous resin (rosin acid, a diterpene).
View Article and Find Full Text PDFJanus structures have unique properties due to their distinct functionalities on opposing faces, but have yet to be realized with flowing liquids. We demonstrate such Janus liquids with a customizable distribution of nanoparticles (NPs) throughout their structures by joining two aqueous streams of NP dispersions in an apolar liquid. Using this anisotropic integration platform, different magnetic, conductive, or non-responsive NPs can be spatially confined to opposite sides of the original interface using magnetic graphene oxide (mGO)/GO, TiCT/GO, or GO suspensions.
View Article and Find Full Text PDFThe rapid co-assembly of graphene oxide (GO) nanosheets and a surfactant at the oil/water (O/W) interface is harnessed to develop a new class of soft materials comprising continuous, multilayer, interpenetrated, and tubular structures. The process uses a microfluidic approach that enables interfacial complexation of two-phase systems, herein, termed as "liquid streaming" (LS). LS is demonstrated as a general method to design multifunctional soft materials of specific hierarchical order and morphology, conveniently controlled by the nature of the oil phase and extrusion's injection pressure, print-head speed, and nozzle diameter.
View Article and Find Full Text PDF