Wound therapies involving gene delivery to the skin have significant potential due to the advantage and ease of local treatment. However, choosing the appropriate vector to enable successful gene expression while also ensuring that the treatment's immediate material components are conducive to healing itself is critical. In this study, we utilized a particulate formulation of the polymer chitosan (chitosan particles, CPs) as a non-viral vector for the delivery of a plasmid encoding human CA5-HIF-1α, a degradation resistant form of HIF-1α, to enhance wound healing.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are implicated as promising therapeutics and drug delivery vehicles in various diseases. However, successful clinical translation will depend on the development of scalable biomanufacturing approaches, especially due to the documented low levels of intrinsic EV-associated cargo that may necessitate repeated doses to achieve clinical benefit in certain applications. Thus, here the effects of a 3D-printed scaffold-perfusion bioreactor system are assessed on the production and bioactivity of EVs secreted from bone marrow-derived mesenchymal stem cells (MSCs), a cell type widely implicated in generating EVs with therapeutic potential.
View Article and Find Full Text PDFIntroduction: Esophageal cancer is an aggressive malignancy with high mortality. Optimal treatment of esophageal cancer remains an elusive goal. Ribonucleic acid (RNA) interference is a novel potential targeted approach to treat esophageal cancer.
View Article and Find Full Text PDFChronic wounds remain a substantial source of morbidity worldwide. An emergent approach that may be well-suited to induce the complex, multicellular processes such as angiogenesis that are required for wound repair is the use of extracellular vesicles (EVs). EVs contain a wide variety of proteins and nucleic acids that enable multifactorial signaling.
View Article and Find Full Text PDF