Bioeng Transl Med
September 2022
Achieving fast and secure wound closure without ocular foreign body sensation is highly desired in ophthalmologic surgery. Sutureless approaches using tissue adhesives are gaining popularity, but their practical use is limited by the difficulty in controlling adhesion time and satisfying safety standards without compromising adhesive performance. Herein, we report user-demand hydrogel-forming ocular glues based on multilength photo-crosslinkable hyaluronic acid (HA), achieving firm tissue adhesion under wet and dynamic conditions and possessing cornea-like optical transparency.
View Article and Find Full Text PDFChitosan has been widely used as a nature-derived polymeric biomaterial due to its high biocompatibility and abundance. However, poor solubility in aqueous solutions of neutral pH and multiple fabrication steps for the molding process limit its application to microneedle technology as a drug delivery carrier. Here, we present a facile method to prepare water-soluble chitosan and its application for sustained transdermal drug delivery.
View Article and Find Full Text PDFA high temperature polyimide bearing anthracene moieties, poly(3,3'-di(9-anthracenemethoxy)-4,4'-biphenylene hexafluoroisopropylidenediphthalimide) (6F-HAB-AM PI) was synthesized. The polymer exhibits excellent thermal stability up to around 410 °C. This polymer is amorphous but orients preferentially in the plane of nanoscale thin films.
View Article and Find Full Text PDFPoly[bis(9H-carbazole-9-ethyl)dipropargylmalonate] (PCzDPM) is a novel pi-conjugated polymer bearing carbazole moieties that has been synthesized by polymerization of bis(9H-carbazole-9-ethyl)dipropargylmalonate with the aid of molybdenum chloride solution as the catalyst. This polymer is thermally stable up to 255 degrees C under a nitrogen atmosphere and 230 degrees C in air ambient; its glass-transition temperature is 147 or 128 degrees C, depending on the polymer chain conformation (helical or planar structure). The charge-transport characteristics of PCzDPM in nanometer-scaled thin films were studied as a function of temperature and film thickness.
View Article and Find Full Text PDFWe have synthesized brush polymers with various glycine derivatives as the end groups of their long alkyl bristles. The polymers are thermally stable up to 170-210 degrees C and form good quality films through conventional spin- or dip-coating and subsequent drying. Interestingly, the thin films of these brush polymers exhibit different molecular multi-layer structures that arise through the efficient self-assembly of the bristles with glycine derivative end groups.
View Article and Find Full Text PDFWe have synthesized a new thermally and dimensionally stable polyimide, poly(4,4'-amino(4-hydroxyphenyl)diphenylene hexafluoroisopropylidenediphthalimide) (6F-HTPA PI). 6F-HTPA PI is soluble in organic solvents and is thus easily processed with conventional solution coating techniques to produce good quality nanoscale thin films. Devices fabricated with nanoscale thin PI films with thicknesses less than 77 nm exhibit excellent unipolar write-once-read-many-times (WORM) memory behavior with a high ON/OFF current ratio of up to 10(6), a long retention time and low power consumption, less than +/-3.
View Article and Find Full Text PDFThis study reports the synthesis and properties (in particular, the electrical switching characteristics) of a new high-performance polyimide (PI), poly(3,3'-di(4-(diphenylamino)benzylidenyliminoethoxy)-4,4'-biphenylene hexafluoroisopropylidenediphthalimide) (6F-HAB-TPAIE PI). This PI polymer bears diphenylaminobenzylidenylimine moieties as side groups and is dimensionally stable up to 280 degrees C and thermally stable up to 440 degrees C. In devices fabricated with the PI polymer as an active memory layer, the active PI polymer was found to operate at less than +/-2 V in electrically bistable unipolar and bipolar switching modes by controlling the compliance current.
View Article and Find Full Text PDFWe have fabricated electrically programmable memory devices with thermally and dimensionally stable poly(N-(N',N'-diphenyl-N'-1,4-phenyl)-N,N-4,4'-diphenylene hexafluoroisopropylidene-diphthalimide) (6F-2TPA PI) films and investigated their switching characteristics and reliability. 6F-2TPA PI films were found to reveal a conductivity of 1.0 x 10(-13)-1.
View Article and Find Full Text PDF