Publications by authors named "Samborska B"

Article Synopsis
  • Coordination of cellular metabolism is crucial for effective CD8 T cell responses during infections, highlighting the role of cytosolic acetyl-CoA production.
  • The enzyme ATP citrate lyase (ACLY) is responsible for generating acetyl-CoA from citrate, and its absence leads T cells to rely on an alternative pathway involving acyl-CoA synthetase short-chain family member 2 (ACSS2) which uses acetate.
  • Both ACLY and ACSS2 are important for managing acetyl-CoA levels, impacting T cell function through modifications like histone acetylation and chromatin accessibility at key effector gene sites.
View Article and Find Full Text PDF

Infusion of C-labeled metabolites provides a gold standard for understanding the metabolic processes used by T cells during immune responses in vivo. Through infusion of C-labeled metabolites (glucose, glutamine, and acetate) in -infected mice, we demonstrate that CD8 T effector (Teff) cells use metabolites for specific pathways during specific phases of activation. Highly proliferative early Teff cells in vivo shunt glucose primarily toward nucleotide synthesis and leverage glutamine anaplerosis in the tricarboxylic acid (TCA) cycle to support adenosine triphosphate and de novo pyrimidine synthesis.

View Article and Find Full Text PDF

That uncoupling protein 1 (UCP1) is the sole mediator of adipocyte thermogenesis is a conventional viewpoint that has primarily been inferred from the attenuation of the thermogenic output of mice genetically lacking Ucp1 from birth (germline Ucp1). However, germline Ucp1 mice harbor secondary changes within brown adipose tissue. To mitigate these potentially confounding ancillary changes, we constructed mice with inducible adipocyte-selective Ucp1 disruption.

View Article and Find Full Text PDF
Article Synopsis
  • Infusing 13C-labeled metabolites like glucose and glutamine in infected mice reveals how CD8+ T effector (Teff) cells utilize these substances for energy during immune responses.
  • Early Teff cells primarily use glucose for nucleotide synthesis and glutamine for energy production in the TCA cycle, while depending on Got1 for aspartate synthesis necessary for their growth.
  • Over the course of an infection, Teff cells shift their energy source from glutamine to acetate, highlighting the changing metabolic needs of these immune cells.
View Article and Find Full Text PDF

Noradrenaline (NA) regulates cold-stimulated adipocyte thermogenesis. Aside from cAMP signalling downstream of β-adrenergic receptor activation, how NA promotes thermogenic output is still not fully understood. Here, we show that coordinated α-adrenergic receptor (AR) and β-AR signalling induces the expression of thermogenic genes of the futile creatine cycle, and that early B cell factors, oestrogen-related receptors and PGC1α are required for this response in vivo.

View Article and Find Full Text PDF

The factors that promote T cell expansion are not fully known. Creatine is an abundant circulating metabolite that has recently been implicated in T cell function; however, its cell-autonomous role in immune-cell function is unknown. Here, we show that creatine supports cell-intrinsic CD8 T cell homeostasis.

View Article and Find Full Text PDF

Metastasis is the leading cause of cancer-related deaths, and obesity is associated with increased breast cancer (BC) metastasis. Preclinical studies have shown that obese adipose tissue induces lung neutrophilia associated with enhanced BC metastasis to this site. Here we show that obesity leads to neutrophil-dependent impairment of vascular integrity through loss of endothelial adhesions, enabling cancer cell extravasation into the lung.

View Article and Find Full Text PDF
Article Synopsis
  • Obesity heightens mortality risk due to related metabolic issues like type 2 diabetes and heart disease, but thermogenic fat can help combat these problems.
  • Creatine plays a vital role in this process by enhancing mitochondrial respiration through a cycle involving its release of ADP, although the proteins responsible for regulating this cycle were previously unknown.
  • The study reveals that creatine kinase B (CKB) is essential for thermogenesis linked to the creatine cycle, as it is activated by thermogenic signals and its deficiency leads to increased obesity and disrupted glucose metabolism in mice.
View Article and Find Full Text PDF

Obesity is a major risk factor for adverse outcomes in breast cancer; however, the underlying molecular mechanisms have not been elucidated. To investigate the role of crosstalk between mammary adipocytes and neoplastic cells in the tumor microenvironment (TME), we performed transcriptomic analysis of cancer cells and adjacent adipose tissue in a murine model of obesity-accelerated breast cancer and identified glycine amidinotransferase (Gatm) in adipocytes and Acsbg1 in cancer cells as required for obesity-driven tumor progression. Gatm is the rate-limiting enzyme in creatine biosynthesis, and deletion in adipocytes attenuated obesity-driven tumor growth.

View Article and Find Full Text PDF

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4 T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM).

View Article and Find Full Text PDF

Naive CD8 T cells differentiating into effector T cells increase glucose uptake and shift from quiescent to anabolic metabolism. Although much is known about the metabolism of cultured T cells, how T cells use nutrients during immune responses in vivo is less well defined. Here, we combined bioenergetic profiling and C-glucose infusion techniques to investigate the metabolism of CD8 T cells responding to Listeria infection.

View Article and Find Full Text PDF

Germline mutations in , which encodes the tumor suppressor liver kinase B1 (LKB1), promote Peutz-Jeghers syndrome (PJS), a cancer predisposition syndrome characterized by the development of gastrointestinal (GI) polyps. Here, we report that heterozygous deletion of in T cells (LT mice) is sufficient to promote GI polyposis. Polyps from LT mice, mice, and human PJS patients display hallmarks of chronic inflammation, marked by inflammatory immune-cell infiltration, signal transducer and activator of transcription 3 (STAT3) activation, and increased expression of inflammatory factors associated with cancer progression [interleukin 6 (IL-6), IL-11, and CXCL2].

View Article and Find Full Text PDF

T cell subsets including effector (T), regulatory (T), and memory (T) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3 T cell and T cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are continuously produced as a by-product of mitochondrial metabolism and eliminated via antioxidant systems. Regulation of mitochondrially produced ROS is required for proper cellular function, adaptation to metabolic stress, and bypassing cellular senescence. Here, we report non-canonical regulation of the cellular energy sensor AMP-activated protein kinase (AMPK) by mitochondrial ROS (mROS) that functions to maintain cellular metabolic homeostasis.

View Article and Find Full Text PDF

During immune challenge, T lymphocytes engage pathways of anabolic metabolism to support clonal expansion and the development of effector functions. Here we report a critical role for the non-essential amino acid serine in effector T cell responses. Upon activation, T cells upregulate enzymes of the serine, glycine, one-carbon (SGOC) metabolic network, and rapidly increase processing of serine into one-carbon metabolism.

View Article and Find Full Text PDF

A central hallmark of cancer cells is the reprogramming of cellular metabolism to meet the bioenergetic and biosynthetic demands of malignant growth. Here, we report that the miR-17∼92 microRNA (miRNA) cluster is an oncogenic driver of tumor metabolic reprogramming. Loss of miR-17∼92 in Myc(+) tumor cells leads to a global decrease in tumor cell metabolism, affecting both glycolytic and mitochondrial metabolism, whereas increased miR-17∼92 expression is sufficient to drive increased nutrient usage by tumor cells.

View Article and Find Full Text PDF

Podocytes are specialized epithelial cells of the kidney blood filtration barrier that contribute to permselectivity via a series of interdigitating actin-rich foot processes. Positioned between adjacent projections is a unique cell junction known as the slit diaphragm, which is physically connected to the actin cytoskeleton via the transmembrane protein nephrin. Evidence indicates that tyrosine phosphorylation of the intracellular tail of nephrin initiates signaling events, including recruitment of cytoplasmic adaptor proteins Nck1 and Nck2 that regulate actin cytoskeletal dynamics.

View Article and Find Full Text PDF

Cancer cells adapt metabolically to proliferate under nutrient limitation. Here we used combined transcriptional-metabolomic network analysis to identify metabolic pathways that support glucose-independent tumor cell proliferation. We found that glucose deprivation stimulated re-wiring of the tricarboxylic acid (TCA) cycle and early steps of gluconeogenesis to promote glucose-independent cell proliferation.

View Article and Find Full Text PDF

One of the major metabolic changes associated with cellular transformation is enhanced nutrient utilization, which supports tumor progression by fueling both energy production and providing biosynthetic intermediates for growth. The liver kinase B1 (LKB1) is a serine/threonine kinase and tumor suppressor that couples bioenergetics to cell-growth control through regulation of mammalian target of rapamycin (mTOR) activity; however, the influence of LKB1 on tumor metabolism is not well defined. Here, we show that loss of LKB1 induces a progrowth metabolic program in proliferating cells.

View Article and Find Full Text PDF

CcmL is a small, pentameric protein that is argued to fill the vertices of β-carboxysomal shell. Here we report the structures of two CcmL orthologs, those from Nostoc sp. PCC 7120 and Thermosynechococcus elongatus BP-1.

View Article and Find Full Text PDF

AMPK is a metabolic sensor that helps maintain cellular energy homeostasis. Despite evidence linking AMPK with tumor suppressor functions, the role of AMPK in tumorigenesis and tumor metabolism is unknown. Here we show that AMPK negatively regulates aerobic glycolysis (the Warburg effect) in cancer cells and suppresses tumor growth in vivo.

View Article and Find Full Text PDF

The classic myelin basic protein (MBP) family of central nervous system (CNS) myelin arises from transcription start site 3 of the Golli (gene of oligodendrocyte lineage) complex and comprises splice isoforms ranging in nominal molecular mass from 14 kDa to (full-length) 21.5 kDa. We have determined here a number of distinct functional differences between the major 18.

View Article and Find Full Text PDF

Cyanobacteria fix carbon within carboxysomes. Here, RubisCO and carbonic anhydrase are coencapsulated within a semipermeable protein shell built from paralogs of the CcmK proteins. Crystal packing patterns suggest that the shell facets may be built as a single layer of CcmK molecules tiled hexagonally in a continuous sheet.

View Article and Find Full Text PDF