Publications by authors named "Samarth Navali"

This work presents a comprehensive approach to reduce bias in word embedding vectors and evaluate the impact on various Natural Language Processing (NLP) tasks. Two GloVe variations (840B and 50) are debiased by identifying the gender direction in the word embedding space and then removing or reducing the gender component from the embeddings of target words, while preserving useful semantic information. Their gender bias is assessed through the Word Embedding Association Test.

View Article and Find Full Text PDF