Mouse models of inherited retinal degenerative diseases such as retinitis pigmentosa are characterized by degeneration of photoreceptors, which hinders the generation of signal to be transmitted to the visual cortex. By monitoring Ca-bioluminescence neural activity, we quantified changes in visual cortical activities in response to visual stimuli in RD10 mice during progression of retinal degeneration, which correlated with progressive deteriorations of electro-retinography signal from the eyes. The number of active neurons in the visual cortex, the intensity of Ca-bioluminescence response, and neural activation parameter showed progressive deterioration during aging.
View Article and Find Full Text PDFGene therapy of retinal diseases using recombinant adeno-associated virus (rAAV) vector-based delivery has shown clinical success, and clinical trials based on rAAV-based optogenetic therapies are currently in progress. Recently, we have developed multi-characteristic opsin (MCO), which has been shown to effectively re-photosensitize photoreceptor-degenerated retina in mice leading to vision restoration at ambient light environment. Here, we report the biodistribution of the rAAV2 carried MCO (vMCO-I) in live samples and post-mortem organs following intraocular delivery in wild-type dogs.
View Article and Find Full Text PDFThe aim of this study is to fabricate a hybrid composite of iron (Fe) core-carbon (C) shell nanoparticles with enhanced magnetic properties for contrast enhancement in magnetic resonance imaging (MRI). These new classes of magnetic core-shell nanoparticles are synthesized using a one-step top-down approach through the electric plasma discharge generated in the cavitation field in organic solvents by an ultrasonic horn. Transmission electron microscopy (TEM) observations revealed the core-shell nanoparticles with 10-85 nm in diameter with excellent dispersibility in water without any agglomeration.
View Article and Find Full Text PDFChronic alcoholism is known to alter the morphology of the hippocampus, an important region of cognitive function in the brain. Therefore, to understand the effect of chronic alcoholism on hippocampal neural cells, we employed a mouse model of chronic alcoholism and quantified intranuclear nanoscale structural alterations in these cells. Transmission electron microscopy (TEM) images of hippocampal neurons were obtained, and the degree of structural alteration in terms of mass density fluctuation was determined using the light-localization properties of optical media generated from TEM imaging.
View Article and Find Full Text PDFOptogenetics is an innovative technique for optical control of cells. This field has exploded over the past decade or so and has given rise to great advances in neuroscience. A variety of applications both from the basic and applied research have emerged, turning the early ideas into a powerful paradigm for cell biology, neuroscience and medical research.
View Article and Find Full Text PDFOptical stimulation of cells expressing light-sensitive proteins (opsins) has allowed targeted activation with cellular specificity. However, since narrow-band light has been used for excitation of these optogenetic probes, only active stimulation strategies are being attempted for clinical applications such as restoration of vision. Here, we report use of broad spectral excitation (white light) for optogenetic stimulation of opsin-sensitized cells.
View Article and Find Full Text PDFCumulative evidence from both humans and animals suggests that the anterior cingulate cortex (ACC) is important for pain-related perception, and thus a likely target for pain relief therapy. However, use of existing electrode based ACC stimulation has not significantly reduced pain, at least in part due to the lack of specificity and likely co-activation of both excitatory and inhibitory neurons. Herein, we report a dramatic reduction of pain behavior in transgenic mice by optogenetic stimulation of the inhibitory neural circuitry of the ACC expressing channelrhodopsin-2.
View Article and Find Full Text PDFStimulation of specific neurons expressing opsins in a targeted region to manipulate brain function has proved to be a powerful tool in neuroscience. However, the use of visible light for optogenetic stimulation is invasive due to low penetration depth and tissue damage owing to larger absorption and scattering. Here, we report, for the first time, in-depth non-scanning fiber-optic two-photon optogenetic stimulation (FO-TPOS) of neurons in-vivo in transgenic mouse models.
View Article and Find Full Text PDFEfficient and targeted delivery of impermeable exogenous material such as small molecules, proteins, and plasmids into cells in culture as well as in vivo is of great importance for drug, vaccine and gene delivery for different therapeutic strategies. Though advent of optoporation by ultrafast laser microbeam has allowed spatial targeting in cells, the requirement of high peak power to create holes on the cell membrane is not practical and also challenging in vivo. Here, we report development and use of uniquely non-reactive crystalline magnetic carbon nanoparticles (CMCNPs) for photothermal delivery (PTD) of impermeable dyes and plasmids encoding light-sensitive proteins into cells using low power continuous wave near-infrared (NIR) laser beam.
View Article and Find Full Text PDFIn vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance.
View Article and Find Full Text PDFMethods of controllable, noncontact rotation of optically trapped microscopic objects have garnered significant attention for tomographic imaging and microfluidic actuation. Here, we report development of a fiber-optic spanner and demonstrate controlled rotation of smooth muscle cells. The rotation is realized by introducing a transverse offset between two counterpropagating beams emanating from single-mode optical fibers.
View Article and Find Full Text PDFPhotothermal therapy with assistance of nanoparticles offers a solution for the destruction of cancer cells without significant collateral damage to otherwise healthy cells. However, minimizing the required number of injected nanoparticles is a major challenge. Here, we introduce the use of magnetic carbon nanoparticles (MCNPs), localizing them in a desired region by applying an external magnetic-field, and irradiating the targeted cancer cells with a near-infrared laser beam.
View Article and Find Full Text PDFThe laser microbeam has enabled highly precise noncontact delivery of exogenous materials into targeted cells without compromising cell viability, which has been a highly challenging task for traditional methods. Here, we report targeted delivery of impermeable substances into mammalian cells and goldfish retinal explants subsequent to ultrafast laser microbeam assisted injection. Introduction of impermeable dye into the cell through localized pore formation was confirmed by distinct fluorescence at the site of pore formation on the membrane and its spatiotemporal diffusion pattern through the nucleus.
View Article and Find Full Text PDFJ Biomed Opt
November 2011
Reorientation of adhering cell(s) with respect to other cell(s) has not been yet possible, thus limiting study of controlled interaction between cells. Here, we report cell detachment upon irradiation with a focused near-infrared laser beam, and reorientation of adherent cells. The detached cell was transported along the axial direction by scattering force and trapped at a higher plane inside the media using the same laser beam by a gravito-optical trap.
View Article and Find Full Text PDFAnalysis of trapped microscopic objects using fluorescence and Raman spectroscopy is gaining considerable interest. We report on the development of single fiber ultrafast optical tweezers and its use in simultaneous two-photon fluorescence (TPF) excitation of trapped fluorescent microscopic objects. Using this method, trapping depth of a few centimeters was achieved inside a colloidal sample with TPF from the trapped particle being visible to the naked eye.
View Article and Find Full Text PDFWe present a simple and efficient method for controlled linear induction of DNA damage in live cells. By passing a pulsed laser beam through a cylindrical lens prior to expansion, an elongated elliptical beam profile is created with the ability to expose controlled linear patterns while keeping the beam and the sample stationary. The length and orientation of the beam at the sample plane were reliably controlled by an adjustable aperture and rotation of the cylindrical lens, respectively.
View Article and Find Full Text PDFProper recognition and repair of DNA damage is critical for the cell to protect its genomic integrity. Laser microirradiation ranging in wavelength from ultraviolet A (UVA) to near-infrared (NIR) can be used to induce damage in a defined region in the cell nucleus, representing an innovative technology to effectively analyze the in vivo DNA double-strand break (DSB) damage recognition process in mammalian cells. However, the damage-inducing characteristics of the different laser systems have not been fully investigated.
View Article and Find Full Text PDFWe report the results of a study carried out to investigate the effect of He-Ne laser (632.8 nm) pre-irradiation on DNA damage induced by continuous wave 1064 nm trapping beam exposure in MCF-7 cells. A significant decrease in % tail DNA (p < 0.
View Article and Find Full Text PDFThe short working distance of microscope objectives has severely restricted the application of optical micromanipulation techniques at larger depths. We show the first use of fiber-optic tweezers toward controlled guidance of neuronal growth cones and stretching of neurons. Further, by mode locking, the fiber-optic tweezers beam was converted to fiber-optic scissors, enabling dissection of neuronal processes and thus allowing study of the subsequent response of neurons to localized injury.
View Article and Find Full Text PDFWe used two-photon excitation with a near-infrared (NIR) laser microbeam to investigate activation of channelrhodopsin 2 (ChR2) in excitable cells for the first time to our knowledge. By measuring the fluorescence intensity of the calcium (Ca) indicator dye, Ca orange, at different wavelengths as a function of power of the two-photon excitation microbeam, we determined the activation potential of the NIR microbeam as a function of wavelength. The two-photon activation spectrum is found to match measurements carried out with single-photon activation.
View Article and Find Full Text PDFPhotochem Photobiol Sci
January 2006
We report the results of a study on generation of reactive oxygen species (ROS) and changes in the membrane potential of mitochondria of carcinoma of cervix (HeLa) and Chinese hamster ovary (CHO) cells following exposure to continuous wave (cw) or pulsed Nd: YAG laser (1064 nm). For a given laser irradiation, the generation of ROS and induced changes in the membrane potential of mitochondria were more pronounced for HeLa cells as compared to CHO cells. However, in both the cells the laser dose required to elicit a given change was much lower with pulsed laser exposure compared to that required with a cw laser exposure.
View Article and Find Full Text PDFWe report an optical tweezers based approach for efficient and controlled manipulation of neuronal growth cones. The approach exploits asymmetric transverse gradient force created in a line optical tweezers to transport actin monomers in the desired growth direction. With this approach induction of artificial growth cones from the neuronal cell body and enhancement of the growth rate of the natural growth cones have been achieved.
View Article and Find Full Text PDFA simple and sensitive approach for detection of malarial parasite in blood samples is demonstrated. The approach exploits our finding that, in hypertonic buffer, a normal red blood cell (RBC) rotates by itself when trapped by an optical tweezers. The rotational speed increases linearly at lower trap-beam powers and more rapidly at higher powers.
View Article and Find Full Text PDFControlled, continuous rotation of cells or intracellular objects was achieved using optical tweezers with an elliptic beam profile (line tweezers), which was generated by placing a cylindrical lens in the path of the trapping beam. By rotating the cylindrical lens, rotation of the elliptic trapping beam and hence of the object trapped therein was achieved. Compared to previously reported techniques for rotation of microscopic objects, this approach is much simpler, gives better utilization of available laser power and also allows much easier control of the trap beam profile.
View Article and Find Full Text PDFA pulsed (17 nanoseconds) Nd:YAG laser (1064 nm) was used to inject impermeable dyes (propidium iodide andiodide and merocyanine 540) and a plasmid (pEGFP-N1) encoding green fluorescent protein (GFP) into human breast adenocarcinoma cells (MCF-7). The cell membrane integrity and viability were fully preserved in this laser-assisted transfer.
View Article and Find Full Text PDF