Publications by authors named "Samara G da Costa-Latge"

Alpha-glucosidase inhibitors play an important role in Diabetes Mellitus (DM) treatment since they prevent postprandial hyperglycemia. The Glycoside Hydrolase family 13 (GH13) is the major family of enzymes acting on substrates containing α-glucoside linkages, such as maltose and amylose/amylopectin chains in starch. Previously, our group identified glycoconjugate 1H-1,2,3-triazoles (GCTs) inhibiting two GH13 α-glycosidases: yeast maltase (MAL12) and porcine pancreatic amylase (PPA).

View Article and Find Full Text PDF
Article Synopsis
  • *Current control methods focus on managing sand fly populations and their reservoirs due to challenges like drug resistance and the toxicity of existing treatments.
  • *Researchers sequenced the genomes of two key sand fly species to better understand their biology and genetic diversity, paving the way for improved strategies to combat the spread of Leishmania parasites.
View Article and Find Full Text PDF

Sugar-rich food sources are essential for sandflies to meet their energy demands, achieving more prolonged survival. The digestion of carbohydrates from food is mainly realized by glycoside hydrolases (GH). To identify genes coding for α-glycosidases and α-amylases belonging to Glycoside Hydrolase Family 13 (GH13) and Glycoside Hydrolase Family 31 (GH31) in , we performed an HMMER search against its genome using known sequences from other dipteran species.

View Article and Find Full Text PDF

Background: Culex quinquefasciatus resistance to the binary toxin from Lysinibacillus sphaericus larvicides can occur because of mutations in the cqm1 gene that prevents the expression of the toxin receptor, Cqm1 α-glucosidase. In a resistant laboratory-selected colony maintained for more than 250 generations, cqm1 and cqm1 resistance alleles were identified. The major allele initially found, cqm1 , became minor and was replaced by cqm1 .

View Article and Find Full Text PDF