We recently reported the benefit of the IV transferring of active exogenous mitochondria in a short-term pharmacological AD (Alzheimer's disease) model. We have now explored the efficacy of mitochondrial transfer in 5XFAD transgenic mice, aiming to explore the underlying mechanism by which the IV-injected mitochondria affect the diseased brain. Mitochondrial transfer in 5XFAD ameliorated cognitive impairment, amyloid burden, and mitochondrial dysfunction.
View Article and Find Full Text PDFTo overcome the lack of specificity of cancer therapeutics and thus create a more potent and effective treatment, we developed a novel chimeric protein, IL2-Smurf2. Here, we describe the production of this chimeric IL2-Smurf2 protein and its variants, with inactive or over-active killing components. Using Western blots, we demonstrated the chimeric protein's ability to specifically enter target cells alone.
View Article and Find Full Text PDFMuch effort has been dedicated in the recent decades to find novel protein/enzyme-based therapies for human diseases, the major challenge of such therapies being the intracellular delivery and reaching sub-cellular organelles. One promising approach is the use of cell-penetrating peptides (CPPs) for delivering enzymes/proteins into cells. In this review, we describe the potential therapeutic usages of CPPs (mainly trans-activator of transcription protein, TAT) in enabling the uptake of biologically active proteins/enzymes needed in cases of protein/enzyme deficiency, concentrating on mitochondrial diseases and on the import of enzymes or peptides in order to destroy pathogenic cells, focusing on cancer cells.
View Article and Find Full Text PDF