Publications by authors named "Samar Azizighannad"

In this research, the synergistic antiviral effects of carbon nanotubes (CNTs) and metal oxides (MO) in the form of novel hybrid structures (MO-CNTs) are presented. Raw CNTs, Ni(OH), FeO and MnO, as well as Ni(OH)-CNT, FeO-CNT and MnO-CNT were explored in this study against MS2 bacteriophage, which was used as a virus surrogate. The nano particles were synthesized and characterized using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), particle size analysis, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Novel polyacrylamide gel electrolytes (PGEs) doped with nano carbons with enhanced electrochemical, thermal, and mechanical properties are presented. Carboxylated carbon nanotubes (fCNTs), graphene oxide sheets (GO), and the hybrid of fCNT/GO were embedded in the PGEs to serve as supercapacitor (SC) electrolytes. Thermal stability of the unmodified PGE increased with the addition of the nano carbons which led to lower capacitance degradation and longer cycling life of the SCs.

View Article and Find Full Text PDF

This paper reports the development of a successful anti-solvent method that incorporates colloidal nano scale graphene oxide (nGO) directly into hydrophobic drug crystals. The nGO dispersed in solution acted as nucleating sites for crystallization and were embedded into the drug crystals without altering its structure or physical properties such as melting point. Several composites of drugs Sulfamethoxazole and Griseofulvin were synthesized with nGO concentration ranging between 0.

View Article and Find Full Text PDF

Herein we report a microwave assisted, fungal extract mediated synthesis of noble metal decorated reduced graphene oxide(r-GO). The carbon to oxygen ratio increased from 1.46 in GO to 2.

View Article and Find Full Text PDF

Graphene Oxides (GO) typically contains different oxygen containing groups such as hydroxyl, carboxyl and epoxy, and reduced GO (r-GO) represents a family of material with diverse chemical properties. In an effort to understand how properties of r-GO change as GO is reduced, a stepwise reduction of the same GO to r-GO containing different levels of oxygen was carried out, and their corresponding chemical and colloidal properties are reported. Starting with GO containing 49 percent oxygen, r-GOs containing 31, 19 and 9 percent oxygen were synthesized.

View Article and Find Full Text PDF