Introduction: Diabetes mellitus is frequently associated with foot ulcers, which pose significant health risks and complications. Impaired wound healing in diabetic patients is attributed to multiple factors, including hyperglycemia, neuropathy, chronic inflammation, oxidative damage, and decreased vascularization.
Rationale: To address these challenges, this project aims to develop bioactive, fast-dissolving nanofiber dressings composed of polyvinylpyrrolidone loaded with a combination of an antibiotic (moxifloxacin or fusidic acid) and anti-inflammatory drug (pirfenidone) using electrospinning technique to prevent the bacterial growth, reduce inflammation, and expedite wound healing in diabetic wounds.
Much attention has been gained on green silver nanoparticles (green-AgNPs) in the medical field due to their remarkable effects against multi-drug resistant (MDR) microorganisms and targeted cancer treatment. In the current study, we demonstrated a simple and environment-friendly (i.e.
View Article and Find Full Text PDFHirsutism is a distressing condition that can affect women's self-esteem due to the excessive amount of hair growth in different body parts, including the face. A temporary managing option is to develop a self-care routine to remove unwanted hair through shaving or waxing. Laser or electrolysis are alternative methods, but in some cases, the use of medications, such as the topical cream Vaniqa, can help in reducing the growth of unwanted hair.
View Article and Find Full Text PDFBackground: Escherichia coli is a common cause of biofilm-associated urinary tract infections (UTIs). Biofilm formation in E. coli is responsible for various indwelling medical device-associated infections, including catheter-associated urinary tract infections (CAUTIs).
View Article and Find Full Text PDFAt nanoconfined interfaces, a micellar ink of lipids was programmed to transform into various secondary structures such as discs, sheets, or sheet and discs via patterning-mediated self-assembly facilitated by polymer pen lithography. Nanoconfinement with printing force, humidity, temperature, pattern size, and total printing time all governed the intramolecular assembly of lipids and determined their structural shape and size. For example, disc or sheet architectures self-organized to produce cochleates or discotic liquid crystals, respectively.
View Article and Find Full Text PDFMitochondria are double-membraned cytoplasmic organelles that are responsible for the production of energy in eukaryotic cells. The process is completed through oxidative phosphorylation (OXPHOS) by the respiratory chain (RC) in mitochondria. Thousands of mitochondria may be present in each cell, depending on the function of that cell.
View Article and Find Full Text PDFCurcumin (CUR) has impressive pharmacologic properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activity. However, the pharmaceutical application of CUR is limited due to its poor aqueous solubility and low bioavailability. The development of novel formulations has attracted considerable attention to the idea of applying nanobiotechnology to improve the therapeutic efficacy of these challenging compounds.
View Article and Find Full Text PDFOxidative chemical etching of metal nanoparticles (NPs) to produce holey graphene (hG) suffers from the presence of aggregated NPs on the graphene surface triggering heterogeneous etching rates and thereby producing irregular sized holes. To encounter such a challenge, we investigated the use of scanning probe block co-polymer lithography (SPBCL) to fabricate precisely positioned silver nanoparticles (AgNPs) on graphene surfaces with exquisite control over the NP size to prevent their aggregation and consequently produce uniformly distributed holes after oxidative chemical etching. SPBCL experiments were carried out printing an ink suspension consisting of poly(ethylene oxide--2-vinylpyridine) and silver nitrate on a graphene surface in a selected pattern under controlled environmental and instrumental parameters followed by thermal annealing in a gaseous environment to fabricate AgNPs.
View Article and Find Full Text PDFThe inadequate eradication of pulmonary infections and chronic inflammation are significant complications in cystic fibrosis (CF) patients, who usually suffer from persistent and frequent lung infections caused by several pathogens, particularly Pseudomonas aeruginosa (P. aeruginosa). The ability of pathogenic microbes to protect themselves from biofilms leads to the development of an innate immune response and antibiotic resistance.
View Article and Find Full Text PDFSkin infection compromises the body's natural defenses. Several antibiotics are no longer effective owing to the evolution of antimicrobial-resistant (AMR) bacteria, hence, the constant development of novel antibacterial agents. Naturally occurring antibacterial agents may be potential candidates for AMR bacterial infection treatments; however, caution should be taken when administering such agents due to the high incidence of toxicity.
View Article and Find Full Text PDFOne of the key challenges in developing a dry powder inhaler (DPI) of an inhalable potent fixed-dose combination (FDC) is the ability of the formulation to generate an effective and reproducible aerosol able to reach the lower parts of the lungs. Herein, a one-step approach is presented to expedite the synthesis of nanoaggregates made from a biocompatible and biodegradable polyamide based on L-lysine amino acid employing market-leading active pharmaceutical ingredients (fluticasone propionate (FP) and salmeterol xinafoate (SAL)) for the management of asthma. The nanoaggregates were synthesized using interfacial polycondensation that produced nanocapsules with an average particle size of 226.
View Article and Find Full Text PDFRepetitive outbreaks and prolonged epidemics represent mortal threats to global health, creating chaos in our globalized world. To date, scientists have been compelled to follow FDA guidelines for conventional clinical trials, which decelerates the release of effective therapies to battle outbreaks and safeguard global health security. Developing multi-purpose platform nanotechnologies to self-target specific organs in response to the disease microenvironment could greatly help to rapidly anticipate and efficiently manage outbreaks.
View Article and Find Full Text PDFEngineered superparamagnetic iron oxide nanoparticles (SPIONs) have been studied extensively for their localized homogeneous heat generation in breast cancer therapy. However, challenges such as aggregation and inability to produce sub-10 nm SPIONs limit their potential in magnetothermal ablation. We report a facile, efficient, and robust in situ method for the synthesis of SPIONs within a poly(ethylene glycol) (PEG) reactor adsorbed onto reduced graphene oxide nanosheets (rGO) via the microwave hydrothermal route.
View Article and Find Full Text PDFThe UV detection sensitivity of ZnO nanoparticles in capillary electrophoresis (CE) analysis was selectively enhanced, by 27 or 19 folds, after adsorption of dithiothreitol (DTT) or cysteine (Cys) in 10mM sodium phosphate buffer. Adsorption equilibrium was reached within 90min for DTT but only 10min for Cys. The adsorption process was best modeled by the Langmuir isotherm, indicating the formation of a monolayer of DTT or Cys on the surface of ZnO nanoparticles.
View Article and Find Full Text PDFA new approach to selectively enhance the ultraviolet (UV) detection sensitivity of titania (TiO), albeit in the presence of silica (SiO), alumina (AlO), and zinc oxide (ZnO), nanoparticles in capillary electrophoresis (CE) analysis was developed. Interactions of Triton X-100 (TX-100), polyethylene glycol (PEG), and deoxyribonucleic acid (DNA) with TiO nanoparticles produced larger CE-UV peaks at various enhancement factors. Single-stranded DNA (ssDNA) was a more effective adsorbate than double-stranded DNA (dsDNA) due to its flexible molecular structure that participated in a stronger interaction with TiO nanoparticles via its sugar-phosphate backbone.
View Article and Find Full Text PDFCapillary electrophoresis with ultraviolet detection (CE-UV) was used to perform competitive binding tests to demonstrate the selective recognition of bisphenol A (BPA) by molecularly imprinted polymer (MIP) particles. Cross-linking polymerization of methacrylic acid (MAA) and ethylene glycol dimethacrylate (EGDMA) in the presence of BPA yielded MIP particles with an average diameter of 164 ± 15 nm. Their ability to recognize BPA in the presence of nonionic, anionic, and cationic water contaminants was investigated.
View Article and Find Full Text PDFHazardous compounds and bacteria in water have an adverse impact on human health and environmental ecology. Polydopamine (or polypyrrole)-coated magnetic nanoparticles and polymethacrylic acid-co-ethylene glycol dimethacrylate submicron particles were investigated for their fast binding kinetics with bisphenol A, proflavine, naphthalene acetic acid, and Escherichia coli. A new method was developed for the rapid determination of % binding by sequential injection of particles first and compounds (or E.
View Article and Find Full Text PDF