Post-acute sequelae of SARS-CoV-2 (SARS2) infection (PASC) is a heterogeneous condition, but the main viral drivers are unknown. Here, we use MENSA, Media Enriched with Newly Synthesized Antibodies, secreted exclusively from circulating human plasmablasts, to provide an immune snapshot that defines the underlying viral triggers. We provide proof-of-concept testing that the MENSA technology can capture the new host immune response to accurately diagnose acute primary and breakthrough infections when known SARS2 virus or proteins are present.
View Article and Find Full Text PDFVascular smooth muscle cells (VSMCs), known for their remarkable lifelong phenotypic plasticity, play a pivotal role in vascular pathologies through their ability to transition between different phenotypes. Our group discovered that the deficiency of the mitochondrial protein Poldip2 induces VSMC differentiation both in vivo and in vitro. Further comprehensive biochemical investigations revealed Poldip2's specific interaction with the mitochondrial ATPase caseinolytic protease chaperone subunit X (CLPX), which is the regulatory subunit for the caseinolytic protease proteolytic subunit (ClpP) that forms part of the ClpXP complex - a proteasome-like protease evolutionarily conserved from bacteria to humans.
View Article and Find Full Text PDFOn December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage.
View Article and Find Full Text PDFAim: This matched case-control study aimed to provide epidemiologic evidence of increased burden of respiratory symptoms and pulmonary function decline among people living with human immunodeficiency virus (HIV) and a history of heavy alcohol consumption.
Methods: Cases were participants with HIV (PWH; n = 75, 33%), and controls were participants without HIV (PWoH; n = 150, 67%). PWH were matched to PWoH by age and sex in the ratio of 1:2.
Alcohol Clin Exp Res (Hoboken)
May 2024
Background: People with alcohol use disorder (AUD) have an increased risk of developing pneumonia and pulmonary diseases. Alveolar macrophages (AMs) are immune cells of the lower respiratory tract that are necessary for clearance of pathogens. However, alcohol causes AM oxidative stress, mitochondrial damage and dysfunction, and diminished phagocytic capacity, leading to lung injury and immune suppression.
View Article and Find Full Text PDFThe intricate relationship between calcium (Ca) homeostasis and mitochondrial function is crucial for cellular metabolic adaptation in tumor cells. Ca-initiated signaling maintains mitochondrial respiratory capacity and ATP synthesis, influencing critical cellular processes in cancer development. Previous studies by our group have shown that the homocysteine-inducible ER Protein with Ubiquitin-Like Domain 1 (HERPUD1) regulates inositol 1,4,5-trisphosphate receptor (ITPR3) levels and intracellular Ca signals in tumor cells.
View Article and Find Full Text PDFPeople with HIV remain at greater risk for both infectious and non-infectious pulmonary diseases even after antiretroviral therapy initiation and CD4 cell count recovery. These clinical risks reflect persistent HIV-mediated defects in innate and adaptive immunity, including in the alveolar macrophage, a key innate immune effector in the lungs. In this proof-of-concept pilot study, we leveraged paired RNA-seq and ATAC-seq analyses of human alveolar macrophages obtained with research bronchoscopy from people with and without HIV to highlight the potential for recent methodologic advances to generate novel hypotheses about biological pathways that may contribute to impaired pulmonary immune function in people with HIV.
View Article and Find Full Text PDFOn October 26th, 2022 the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite symposium at the annual meeting of the Society for Leukocyte Biology in Hawaii. The 2022 meeting focused broadly on the immunological consequences of acute, chronic, and prenatal alcohol exposure and how these contribute to damage in multiple organs and tissues. These included alcohol-induced neuroinflammation, impaired lung immunity, intestinal dysfunction, and decreased anti-microbial and anti-viral responses.
View Article and Find Full Text PDFRGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. There, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE).
View Article and Find Full Text PDFAlcohol Clin Exp Res (Hoboken)
January 2023
Alcohol use disorders (AUD) cause alveolar macrophage (AM) immune dysfunction and increase risk of lung infections. Excessive alcohol use causes AM oxidative stress, which impairs AM phagocytosis and pathogen clearance from the alveolar space. Alcohol induces expression of NADPH oxidases (Noxes), primary sources of oxidative stress in AM.
View Article and Find Full Text PDFPulmonary hypertension (PH) comprises a diverse group of disorders that share a common pathway of pulmonary vascular remodeling leading to right ventricular failure. Development of anti-remodeling strategies is an emerging frontier in PH therapeutics that requires a greater understanding of the interactions between vascular wall cells and their extracellular matrices. The ubiquitous matrix glycan, hyaluronan (HA), is markedly elevated in lungs from patients and experimental models with PH.
View Article and Find Full Text PDFAlcohol
September 2022
On November 19th, 2021, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at Loyola University Chicago Health Sciences Campus in Maywood, Illinois. The 2021 meeting focused on how alcohol misuse is linked to immune system derangements, leading to tissue and organ damage, and how this research can be translated into improving treatment of alcohol-related disease. This meeting was divided into three plenary sessions: the first session focused on how alcohol misuse affects different parts of the immune system, the second session presented research on mechanisms of organ damage from alcohol misuse, and the final session highlighted research on potential therapeutic targets for treating alcohol-mediated tissue damage.
View Article and Find Full Text PDFExcessive alcohol use increases the risk of developing respiratory infections partially due to impaired alveolar macrophage (AM) phagocytic capacity. Previously, we showed that chronic ethanol (EtOH) exposure led to mitochondrial derangements and diminished oxidative phosphorylation in AM. Since oxidative phosphorylation is needed to meet the energy demands of phagocytosis, EtOH mediated decreases in oxidative phosphorylation likely contribute to impaired AM phagocytosis.
View Article and Find Full Text PDFAlthough the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold.
View Article and Find Full Text PDFGlobally, an estimated 107 million people have an alcohol use disorder (AUD) leading to 2.8 million premature deaths each year. Tuberculosis (TB) is one of the leading causes of death globally and over 8% of global TB cases are estimated to be attributable to AUD.
View Article and Find Full Text PDFObesity and obesity-related metabolic disorders are linked to the intestinal microbiome. However, the causality of changes in the microbiome-host interaction affecting energy metabolism remains controversial. Here, we show the microbiome-derived metabolite δ-valerobetaine (VB) is a diet-dependent obesogen that is increased with phenotypic obesity and is correlated with visceral adipose tissue mass in humans.
View Article and Find Full Text PDFPneumonia causes a significant burden of disease worldwide. Although all populations are at risk of pneumonia, those at extremes of age and those with immunosuppressive disorders, underlying respiratory disease, and critical illness are particularly vulnerable. Although clinical practice guidelines addressing the management and treatment of pneumonia exist, few of the supporting studies focus on the crucial contributions of the host in pneumonia pathogenesis and recovery.
View Article and Find Full Text PDFAlcohol use disorders (AUD) increase susceptibility to respiratory infections by 2- to 4-fold in part because of impaired alveolar macrophage (AM) immune function. Alcohol causes AM oxidative stress, diminishing AM phagocytic capacity and clearance of microbes from the alveolar space. Alcohol increases AM NADPH oxidases (Noxes), primary sources of AM oxidative stress, and reduces peroxisome proliferator-activated receptor γ (PPARγ) expression, a critical regulator of AM immune function.
View Article and Find Full Text PDFAlcohol misuse and smoking are risk factors for pneumonia, yet the impact of combined cigarette smoke and alcohol on pneumonia remains understudied. Smokers who misuse alcohol form lung malondialdehyde-acetaldehyde (MAA) protein adducts and have decreased levels of anti-MAA secretory IgA (sIgA). Transforming growth factor-β (TGF-β) down-regulates polymeric Ig receptor (pIgR) on mucosal epithelium, resulting in decreased sIgA transcytosis to the mucosa.
View Article and Find Full Text PDFExcessive alcohol users have increased risk of developing respiratory infections in part due to oxidative stress-induced alveolar macrophage (AM) phagocytic dysfunction. Chronic ethanol exposure increases cellular oxidative stress in AMs via upregulation of NADPH oxidase (Nox) 4, and treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, rosiglitazone, decreases ethanol-induced Nox4. However, the mechanism by which ethanol induces Nox4 expression and the PPARγ ligand reverses this defect has not been elucidated.
View Article and Find Full Text PDFDespite the advent of antiretroviral therapy, people living with HIV suffer from a range of infectious and noninfectious pulmonary complications. HIV impairs antioxidant defenses and innate immune function of the alveolar macrophage by diminishing granulocyte macrophage-colony stimulating factor (GM-CSF) signaling. Since GM-CSF may be linked to mitochondria, we sought to determine the effects of HIV on GM-CSF receptor expression and alveolar macrophage mitochondrial function.
View Article and Find Full Text PDFOn November 15, 2019, the 24th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite conference during the annual Society for Leukocyte Biology meeting in Boston, Massachusetts. The 2019 meeting focused on alcohol, immunity, and organ damage, and included two plenary sessions. The first session highlighted new research exploring the mechanisms of alcohol-induced inflammation and liver disease, including effects on lipidomics and lipophagy, regulatory T cells, epigenetics, epithelial cells, and age-related changes in the gut.
View Article and Find Full Text PDF