Prodrugs engineered for preferential activation in diseased versus normal tissues offer immense potential to improve the therapeutic indexes (TIs) of preclinical and clinical-stage active pharmaceutical ingredients that either cannot be developed otherwise or whose efficacy or tolerability it is highly desirable to improve. Such approaches, however, often suffer from trial-and-error design, precluding predictive synthesis and optimization. Here, using bromodomain and extra-terminal (BET) protein inhibitors (BETi)-a class of epigenetic regulators with proven anticancer potential but clinical development hindered in large part by narrow TIs-we introduce a macromolecular prodrug platform that overcomes these challenges.
View Article and Find Full Text PDFIn the version of this Article originally published, the author Peter Blume-Jensen was not denoted as a corresponding author; this has now been amended and the author's email address has been added. The 'Correspondence and requests for materials' statement was similarly affected and has now been updated with the author's initials 'P.B-J.
View Article and Find Full Text PDFAt present there are no drugs for the treatment of chronic liver fibrosis that have been approved by the Food and Drug administration of the United States. Telmisartan, a small-molecule antihypertensive drug, displays antifibrotic activity, but its clinical use is limited because it causes systemic hypotension. Here, we report the scalable and convergent synthesis of macromolecular telmisartan prodrugs optimized for preferential release in diseased liver tissue.
View Article and Find Full Text PDFBackground: Successful nerve regeneration depends upon directed migration of morphologically specialized repair state Schwann cells across a nerve defect. Although several groups have studied directed migration of Schwann cells in response to chemical or topographic cues, the current understanding of how the mechanical environment influences migration remains largely understudied and incomplete. Therefore, the focus of this study was to evaluate Schwann cell migration and morphodynamics in the presence of stiffness gradients, which revealed that Schwann cells can follow extracellular gradients of increasing stiffness, in a form of directed migration termed durotaxis.
View Article and Find Full Text PDF