Publications by authors named "Samantha Ubl"

A novel low volume blood loop model (Ension Triad System [ETS]) incorporating pulsatile flow and a proprietary low-activation blood-contacting surface (Ension bioactive surface [EBS]) enabling high signal-to-noise performance is described. The ETS system incorporates a test chamber that allows direct comparison of material samples or finished medical devices such as catheters with varying compositions and/or surface treatments. ETS performance is presented from two independent organizations (Medtronic and MLM Labs) and includes results for hemolysis (pfHgb), platelet count, platelet activation (βTG), coagulation (TAT), inflammation (PMN Elastase, PMN CD112b, and monocyte CD112b) and immune response (SC5b-9) were made on: (1) the EBS-treated system itself without a test material (No Material, NM); (2) the EBS-treated system with an idealized untreated catheter (UC); and (3) the EBS-treated system with the prototype catheter treated with the EBS surface treatment (CC).

View Article and Find Full Text PDF

Device manufacturers and regulatory agencies currently utilize expensive and often inconclusive in vivo vascular implant models to assess implant material thrombogenicity. We report an in vitro thrombogenicity assessment methodology where test materials (polyethylene, Elasthane™ 80A polyurethane, Pebax®), alongside positive (borosilicate glass) and negative (no material) controls, were exposed to fresh human blood, with attention to common blood-contact use conditions and the variables: material (M), material surface modification (SM) with heparin, model (Mo), time (T), blood donor (D), exposure ratio (ER; cm material/ml blood), heparin anticoagulation (H), and blood draw/fill technique (DT). Two models were used: (1) a gentle-agitation test tube model and (2) a pulsatile flow closed-loop model.

View Article and Find Full Text PDF

Flow diversion is a disruptive technology for the treatment of intracranial aneurysms. However, these intraluminal devices pose a risk for thromboembolic complications despite dual antiplatelet therapy. We report the thrombogenic potential of the following flow diversion devices measured experimentally in a novel human blood in-vitro pulsatile flow loop model: Pipeline™ Flex Embolization Device (Pipeline), Pipeline™ Flex Embolization Device with Shield Technology™ (Pipeline Shield), Derivo Embolization Device (Derivo), and P64 Flow Modulation Device (P64).

View Article and Find Full Text PDF

Endovascular treatment of intracranial aneurysms with endoluminal flow diverters (single or multiple) has proven to be clinically safe and effective, but is associated with a risk of thromboembolic complications. Recently, a novel biomimetic surface modification with covalently bound phosphorylcholine (Shield Technology™) has shown to reduce the material thrombogenicity of the Pipeline flow diverter. Thrombogenicity of Pipeline Flex, Pipeline Shield, and Flow Redirection Endoluminal Device (FRED) in the presence of human blood under physiological flow conditions-in addition to relative increase in thrombogenicity with multiple devices-remains unknown and was investigated here.

View Article and Find Full Text PDF