Increasing evidence suggests that Zn2+ acts as a second messenger capable of transducing extracellular stimuli into intracellular signaling events. The importance of Zn2+ as a signaling molecule in cardiovascular functioning is gaining traction. In the heart, Zn2+ plays important roles in excitation-contraction (EC) coupling, excitation-transcription coupling, and cardiac ventricular morphogenesis.
View Article and Find Full Text PDFMagnesium (Mg) has many physiological functions within the body. These include important roles in maintaining cardiovascular functioning, where it contributes to the regulation of cardiac excitation-contraction coupling, endothelial functioning and haemostasis. The haemostatic roles of Mg impact upon both the protein and cellular arms of coagulation.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2022
Levothyroxine (LT4) is used to treat frequently encountered endocrinopathies such as thyroid diseases. It is regularly used in clinical (overt) hypothyroidism cases and subclinical (latent) hypothyroidism cases in the last decade. Suppressive LT4 therapy is also part of the medical regimen used to manage thyroid malignancies after a thyroidectomy.
View Article and Find Full Text PDFZn is an essential regulator of coagulation and is released from activated platelets. In plasma, the free Zn concentration is fine-tuned through buffering by human serum albumin (HSA). Importantly, the ability of HSA to bind/buffer Zn is compromised by co-transported non-esterified fatty acids (NEFAs).
View Article and Find Full Text PDFAt least 5% of children present unexpected difficulties in expressing and understanding spoken language. This condition is highly heritable and often co-occurs with other neurodevelopmental disorders such as dyslexia and ADHD. Through an exome sequencing analysis, we identified a rare missense variant (chr16:84405221, GRCh38.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
January 2021
Type-1 diabetes mellitus (T1DM) is associated with metabolic changes leading to alterations in glucose and lipid handling. While T1DM-associated effects on many major plasma lipids have been characterised, such effects on plasma free fatty acids (FFA) have not been fully examined. Using gas chromatography-mass spectrometry, we measured the plasma concentrations of FFA species in individuals with T1DM (n = 44) and age/sex-matched healthy controls (n = 44).
View Article and Find Full Text PDFIndividuals with type-1 diabetes mellitus (T1DM) have a higher risk of thrombosis and low plasma magnesium concentrations. As magnesium is a known regulator of fibrin network formation, we investigated potential associations between fibrin clot properties and plasma magnesium concentrations in 45 individuals with T1DM and 47 age- and sex-matched controls without diabetes. Fibrin clot characteristics were assessed using a validated turbidimetric assay and associations with plasma magnesium concentration were examined.
View Article and Find Full Text PDFType VI secretion systems (T6SSs) are nanomachines widely used by bacteria to deliver toxic effector proteins directly into neighbouring cells. However, the modes of action of many effectors remain unknown. Here we report that Ssp6, an anti-bacterial effector delivered by a T6SS of the opportunistic pathogen Serratia marcescens, is a toxin that forms ion-selective pores.
View Article and Find Full Text PDFLipid availability within transmembrane nano-pockets of ion channels is linked with mechanosensation. However, the effect of hindering lipid-chain penetration into nano-pockets on channel structure has not been demonstrated. Here we identify nano-pockets on the large conductance mechanosensitive channel MscL, the high-pressure threshold channel.
View Article and Find Full Text PDFGlycemia and insulin resistance are important regulators of multiple physiological processes and their dysregulation has wide-ranging consequences, including alterations in plasma concentrations of metal micronutrients. Here, magnesium, zinc, copper, selenium and glycated albumin (HbA1c) concentrations and quartile differences were examined in 45 subjects with type-I diabetes (T1DM), 54 subjects with type-II diabetes (T2DM) and 62 control subjects in order to assess potential differences between sexes and between T1DM and T2DM. Plasma magnesium concentration was decreased in T1DM subjects, with the second, third and fourth quartiles of magnesium concentrations associated with the absence of T1DM.
View Article and Find Full Text PDFHeparan sulfate (HS), dermatan sulfate (DS) and heparin are glycosaminoglycans (GAGs) that serve as key natural and pharmacological anticoagulants. During normal clotting such agents require to be inactivated or neutralised. Several proteins have been reported to facilitate their neutralisation, which reside in platelet α-granules and are released following platelet activation.
View Article and Find Full Text PDFThe glycosaminoglycans (GAGs) heparan sulfate, dermatan sulfate, and heparin are important anticoagulants that inhibit clot formation through interactions with antithrombin and heparin cofactor II. Unfractionated heparin, low-molecular-weight heparin, and heparin-derived drugs are often the main treatments used clinically to handle coagulatory disorders. A wide range of proteins have been reported to bind and neutralize these GAGs to promote clot formation.
View Article and Find Full Text PDFWidespread antibiotic resistance, especially of Gram-negative bacteria, has become a severe concern for human health. Tripartite efflux pumps are one of the major contributors to resistance in Gram-negative pathogens, by efficiently expelling a broad spectrum of antibiotics from the organism. In Neisseria gonorrhoeae, one of the first bacteria for which pan-resistance has been reported, the most expressed efflux complex is MtrCDE.
View Article and Find Full Text PDFAberrant Zn homeostasis is associated with dysregulated intracellular Ca release, resulting in chronic heart failure. In the failing heart a small population of cardiac ryanodine receptors (RyR2) displays sub-conductance-state gating leading to Ca leakage from sarcoplasmic reticulum (SR) stores, which impairs cardiac contractility. Previous evidence suggests contribution of RyR2-independent Ca leakage through an uncharacterized mechanism.
View Article and Find Full Text PDFThe aim of this study was to investigate whether the presence of endogenous estradiol alters the effects of a high-fat (HF) diet on activity/expression of the cardiac Na/K-ATPase, via PI3K/IRS and RhoA/ROCK signalling cascades in female rats. For this study, female Wistar rats (8 weeks old, 150-200 g) were fed a standard diet or a HF diet (balanced diet for laboratory rats enriched with 42% fat) for 10 weeks. The results show that rats fed a HF diet exhibited a decrease in phosphorylation of the α subunit of Na/K-ATPase by 30% (p < 0.
View Article and Find Full Text PDFThe aim of this study was to investigate the in vivo effects of 17β-estradiol (E) on myocardial metabolism and inducible nitric oxide synthase (iNOS) expression/activity in obese rats. Male Wistar rats were fed with a normal or a high fat (HF) diet (42% fat) for 10 weeks. Half of the HF fed rats were treated with a single dose of E while the other half were placebo-treated.
View Article and Find Full Text PDFBackground: Overexpression of inducible nitric oxide synthase (iNOS) is a key link between high-fat (HF) diet induced obesity and cardiovascular disease. Oestradiol has cardioprotective effects that may be mediated through reduction of iNOS activity/expression.
Methods: In the present study, female Wistar rats were fed a standard diet or a HF diet (42% fat) for 10 weeks.
Men and women differ substantially with regard to the severity of insulin resistance (IR) but the underlying mechanism(s) of how this occurs is poorly characterized. We investigated whether a high fat (HF) diet resulted in sex-specific differences in nitrite/nitrate production and lipid metabolism and whether these variances may contribute to altered obesity-induced IR. Male and female Wistar rats were fed a standard laboratory diet or a HF diet for 10 weeks.
View Article and Find Full Text PDFNicotinic acid adenine dinucleotide phosphate (NAADP) potently releases Ca(2+) from acidic intracellular endolysosomal Ca(2+) stores. It is widely accepted that two types of two-pore channels, termed TPC1 and TPC2, are responsible for the NAADP-mediated Ca(2+) release but the underlying mechanisms regulating their gating appear to be different. For example, although both TPC1 and TPC2 are activated by NAADP, TPC1 appears to be additionally regulated by cytosolic Ca(2+) .
View Article and Find Full Text PDFAberrant Zn(2+) homeostasis is a hallmark of certain cardiomyopathies associated with altered contractile force. In this study, we addressed whether Zn(2+) modulates cardiac ryanodine receptor gating and Ca(2+) dynamics in isolated cardiomyocytes. We reveal that Zn(2+) is a high affinity regulator of RyR2 displaying three modes of operation.
View Article and Find Full Text PDFBiochem Soc Trans
June 2015
It is well established that mammalian cells contain a small but measurable pool of free or labile zinc in the cytosol that is buffered in the high picomolar range. Recent attention has focused on the fact that this pool of free zinc has signalling effects that can be evoked through extracellular stimuli posing the question as to whether zinc should be regarded as a second messenger. Our knowledge of the targets, the biological significance and the molecular mechanisms of zinc signalling is limited but recent evidence suggests that zinc homoeostasis may be intimately linked to intracellular calcium signalling.
View Article and Find Full Text PDFNAADP potently triggers Ca2+ release from acidic lysosomal and endolysosomal Ca2+ stores. Human two-pore channels (TPC1 and TPC2), which are located on these stores, are involved in this process, but there is controversy over whether TPC1 and TPC2 constitute the Ca2+ release channels. We therefore examined the single-channel properties of human TPC1 after reconstitution into bilayers of controlled composition.
View Article and Find Full Text PDF