Microparticles (MP; particles <5 mm) are ubiquitous in marine environments. Understanding MP concentrations at different spatial scales in the Salish Sea, Washington, USA, can provide insight into how ecologically and economically important species may be affected. We collected mussels across the Salish Sea at regional and localized scales, chemically processed tissue to assess MP contamination, and used visual and chemical analyses for particle identification.
View Article and Find Full Text PDFReliable quantification and characterization of microplastics are necessary for large-scale and long-term monitoring of their behaviors and evolution in the environment. This is especially true in recent times because of the increase in the production and use of plastics during the pandemic. However, because of the myriad of microplastic morphologies, dynamic environmental forces, and time-consuming and expensive methods to characterize microplastics, it is challenging to understand microplastic transport in the environment.
View Article and Find Full Text PDFAffinity-capture self-interaction nanoparticle spectroscopy (AC-SINS) is an assay developed to monitor the propensity of antibody self-association, hence assessing its colloidal stability. It has been widely used by pharmaceutical companies to screen antibodies at the early discovery stages, aiming to flag potential issues with high concentration formulation. However, the original assay format is not suitable for certain formulation conditions, in particular histidine buffer.
View Article and Find Full Text PDFPlastic pollution is a threat to marine life with long term impacts to ecosystems and organisms in the sea. In this study, we quantified the presence of microparticles in wild populations of Pacific oysters (Crassostrea gigas) from the Salish Sea, Washington State. Examination under a dissecting microscope revealed 63% of oysters contained microparticles (~1.
View Article and Find Full Text PDFPoor solubility is a common challenge encountered during the development of high concentration monoclonal antibody (mAb) formulations, but there are currently no methods that can provide predictive information on high-concentration behavior of mAbs in early discovery. We explored the utility of methodologies used for determining extrapolated solubility as a way to rank-order mAbs based on their relative solubility properties. We devised two approaches to accomplish this: 1) vapor diffusion technique utilized in traditional protein crystallization practice, and 2) polyethylene glycol (PEG)-induced precipitation and quantitation by turbidity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2015
Mitigation of bacterial adhesion and subsequent biofilm formation is quickly becoming a strategy for the prevention of hospital-acquired infections. We demonstrate a basic strategy for surface modification that combines the ability to control attachment by microbes with the ability to inactivate microbes. The surface consists of two active materials: poly(p-phenylene ethynylene)-based polymers, which can inactivate a wide range of microbes and pathogens, and poly(N-isopropylacrylamide)-based polymers, which can switch between an hydrophobic "capture" state and a hydrophilic "release" state.
View Article and Find Full Text PDFBispecific antibodies (BsAbs) represent an emerging class of biologics that achieve dual targeting with a single agent. Recombinant DNA technologies have facilitated a variety of creative bispecific designs with many promising therapeutic applications; however, practical methods for producing high quality BsAbs that have good product stability, long serum half-life, straightforward purification, and scalable production have largely been limiting. Here we describe a protein-engineering approach for producing stable, scalable tetravalent IgG-like BsAbs.
View Article and Find Full Text PDF