For reptiles, the incubation environment experienced by embryos during development plays a major role in many biological processes. The unprecedented rate of climate change makes it critical to understand the effects that the incubation environment has on developing embryos, particularly in imperiled species such as chelonians. Consequently, a number of studies have focused on the effects of different environmental conditions on several developmental processes and hatchling phenotypic traits.
View Article and Find Full Text PDFNeck masses present as palpable lumps and bumps in children with acquired lesions more common than congenital ones. Assessment of the anatomical site of origin, signal, and contrast enhancement characteristics may help define the etiology of the lesions, eg, developmental, inflammatory, vascular, or neoplastic. The age of the patient along with detailed clinical history and physical exam findings are important element to narrow down the differential diagnosis.
View Article and Find Full Text PDFMitochondria critically regulate cytoplasmic Ca(2+) concentration ([Ca(2+)]c), but the effects of sensory neuron injury have not been examined. Using FCCP (1µM) to eliminate mitochondrial Ca(2+) uptake combined with oligomycin (10µM) to prevent ATP depletion, we first identified features of depolarization-induced neuronal [Ca(2+)]c transients that are sensitive to blockade of mitochondrial Ca(2+) buffering in order to assess mitochondrial contributions to [Ca(2+)]c regulation. This established the loss of a shoulder during the recovery of the depolarization (K(+))-induced transient, increased transient peak and area, and elevated shoulder level as evidence of diminished mitochondrial Ca(2+) buffering.
View Article and Find Full Text PDFObjectives: Neural stimulation may provide analgesia for a variety of painful conditions. Activation of primary sensory neurons, which underlies pain relief by spinal cord stimulation, also may be achieved by stimulation at the level of the dorsal root ganglion (DRG). The DRG also is a site of pain pathogenesis, particularly in neuropathic pain.
View Article and Find Full Text PDFThe T-junction of sensory neurons in the dorsal root ganglion (DRG) is a potential impediment to action potential (AP) propagation towards the CNS. Using intracellular recordings from rat DRG neuronal somata during stimulation of the dorsal root, we determined that the maximal rate at which all of 20 APs in a train could successfully transit the T-junction (following frequency) was lowest in C-type units, followed by A-type units with inflected descending limbs of the AP, and highest in A-type units without inflections. In C-type units, following frequency was slower than the rate at which AP trains could be produced in either dorsal root axonal segments or in the soma alone, indicating that the T-junction is a site that acts as a low-pass filter for AP propagation.
View Article and Find Full Text PDF