Publications by authors named "Samantha Milano"

Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated in vitro, a nuanced understanding of how their assembly is regulated in vivo remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in Drosophila melanogaster egg chambers.

View Article and Find Full Text PDF

Cell cycle progression is tightly controlled by the regulated synthesis and degradation of Cyclins, such as Cyclin A and Cyclin B, which activate CDK1 to trigger mitosis. Mutations affecting Cyclin regulation are often linked to tumorigenesis, making the study of cyclin mRNA regulation critical for identifying new cancer therapies. In this study, we demonstrate via super-resolution microscopy that and mRNAs associate with Bruno 1 and Cup in nurse cells.

View Article and Find Full Text PDF

Advances in the study of mRNAs have yielded major new insights into post-transcriptional control of gene expression. Focus on the spatial regulation of mRNAs in highly polarized cells has demonstrated that mRNAs translocate through cells as mRNA:protein granules (mRNPs). These complex self-assemblies containing nuclear and cytoplasmic proteins are fundamental to the coordinated translation throughout cellular development.

View Article and Find Full Text PDF

Processing bodies (P-bodies) are cytoplasmic membrane-less organelles which host multiple mRNA processing events. While the fundamental principles of P-body organization are beginning to be elucidated , a nuanced understanding of how their assembly is regulated remains elusive. Here, we investigate the potential link between ER exit sites and P-bodies in egg chambers.

View Article and Find Full Text PDF

Study of the timing and location for mRNA translation across model systems has begun to shed light on molecular events fundamental to such processes as intercellular communication, morphogenesis, and body pattern formation. In , the posterior mRNA determinant, , is transcribed maternally but translated only when properly localized at the oocyte's posterior cortex. Two effector proteins, Bruno1 and Cup, mediate steps of mRNA regulation.

View Article and Find Full Text PDF