Publications by authors named "Samantha M Desmarais"

Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face.

View Article and Find Full Text PDF

The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species.

View Article and Find Full Text PDF

The bacterial GTPase FtsZ forms a cytokinetic ring at midcell, recruits the division machinery and orchestrates membrane and peptidoglycan cell wall invagination. However, the mechanism for FtsZ regulation of peptidoglycan metabolism is unknown. The FtsZ GTPase domain is separated from its membrane-anchoring C-terminal conserved (CTC) peptide by a disordered C-terminal linker (CTL).

View Article and Find Full Text PDF

Although bacterial cell morphology is tightly controlled, the principles of size regulation remain elusive. In Escherichia coli, perturbation of cell-wall synthesis often results in similar morphologies, making it difficult to deconvolve the complex genotype-phenotype relationships underlying morphogenesis. Here we modulated cell width through heterologous expression of sequences encoding the essential enzyme PBP2 and through sublethal treatments with drugs that inhibit PBP2 and the MreB cytoskeleton.

View Article and Find Full Text PDF

In virtually all bacteria, the cell wall is crucial for mechanical integrity and for determining cell shape. Escherichia coli's rod-like shape is maintained via the spatiotemporal patterning of cell-wall synthesis by the actin homologue MreB. Here, we transiently inhibited cell-wall synthesis in E.

View Article and Find Full Text PDF

Assembly of protein complexes is a key mechanism for achieving spatial and temporal coordination in processes involving many enzymes. Growth of rod-shaped bacteria is a well-studied example requiring such coordination; expansion of the cell wall is thought to involve coordination of the activity of synthetic enzymes with the cytoskeleton via a stable complex. Here, we use single-molecule tracking to demonstrate that the bacterial actin homolog MreB and the essential cell wall enzyme PBP2 move on timescales orders of magnitude apart, with drastically different characteristic motions.

View Article and Find Full Text PDF

The bacterial cell wall is critical for the determination of cell shape during growth and division, and maintains the mechanical integrity of cells in the face of turgor pressures several atmospheres in magnitude. Across the diverse shapes and sizes of the bacterial kingdom, the cell wall is composed of peptidoglycan, a macromolecular network of sugar strands crosslinked by short peptides. Peptidoglycan's central importance to bacterial physiology underlies its use as an antibiotic target and has motivated genetic, structural, and cell biological studies of how it is robustly assembled during growth and division.

View Article and Find Full Text PDF

The peptidoglycan (PG) cell wall is a unique macromolecule responsible for both shape determination and cellular integrity under osmotic stress in virtually all bacteria. A quantitative understanding of the relationships between PG architecture, morphogenesis, immune system activation and pathogenesis can provide molecular-scale insights into the function of proteins involved in cell wall synthesis and cell growth. High-performance liquid chromatography (HPLC) has played an important role in our understanding of the structural and chemical complexity of the cell wall by providing an analytical method to quantify differences in chemical composition.

View Article and Find Full Text PDF

Biomolecule encapsulation in droplets is important for miniaturizing biological assays to reduce reagent consumption, cost and time of analysis, and can be most effectively achieved by using microfabricated devices. Microfabricated fluidic devices can generate emulsified drops of uniform size with controlled dimensions and contents. Biological and chemical components such as cells, microgels, beads, hydrogel precursors, polymer initiators, and other droplets can be encapsulated within these drops.

View Article and Find Full Text PDF

DNA barcodes are short, unique ssDNA primers that "mark" individual biomolecules. To gain better understanding of biophysical parameters constraining primer-dimer formation between primers that incorporate barcode sequences, we have developed a capillary electrophoresis method that utilizes drag-tag-DNA conjugates to quantify dimerization risk between primer-barcode pairs. Results obtained with this unique free-solution conjugate electrophoresis approach are useful as quantitatively precise input data to parameterize computation models of dimerization risk.

View Article and Find Full Text PDF