Background: Template switching between two distinct HIV-1 RNA genomes during reverse transcription gives rise to recombinant viruses that greatly expand the genetic diversity of HIV-1 and have adverse implications for drug resistance, immune escape, and vaccine design. Virions with two distinct genomes are produced exclusively from cells infected with two or more viruses, or 'doubly infected' cells. Previous studies have revealed higher than expected frequencies of doubly infected cells compared to frequencies based on chance alone, suggesting non-random enhancement of double infection.
View Article and Find Full Text PDFFusion between the viral membrane of human immunodeficiency virus (HIV) and the host cell marks the end of the HIV entry process and the beginning of a series of post-entry events including uncoating, reverse transcription, integration, and viral gene expression. The efficiency of post-entry events can be modulated by cellular factors including viral restriction factors and can lead to several distinct outcomes: productive, latent, or abortive infection. Understanding host and viral proteins impacting post-entry event efficiency and viral outcome is critical for strategies to reduce HIV infectivity and to optimize transduction of HIV-based gene therapy vectors.
View Article and Find Full Text PDF