Following active lengthening, steady-state isometric (ISO) torque is greater than a purely ISO contraction at the same muscle length, this is referred to as residual torque enhancement (rTE). A phenomenon of rTE is activation reduction, characterized by reduced electromyography (EMG) amplitude for a given torque output. We hypothesized that lower motor unit discharge rates would contribute to activation reduction and lessening torque steadiness.
View Article and Find Full Text PDFElbow flexor force steadiness is less with the forearm pronated (PRO) compared with neutral (NEU) or supinated (SUP) and may relate to neural excitability. Although not tested in a force steadiness paradigm, lower spinal and cortical excitability was observed separately for biceps brachii in PRO, possibly dependent on contractile status at the time of assessment. This study aimed to investigate position-dependent changes in force steadiness as well as spinal and cortical excitability at a variety of contraction intensities.
View Article and Find Full Text PDFPurpose: Length dependence of post-activation potentiation (PAP) is a well-established phenomenon in animal models but less certain in intact whole human muscles. Recent advances in B-mode ultrasonography provide real-time imaging and evaluation of human muscle fascicles in vivo, thus removing the assumption that joint positioning alters fascicle length and influences the extent of PAP. The purpose of this study was to determine whether a conditioning maximal voluntary contraction (MVC) would influence the return of medial gastrocnemius (MG) fascicles to baseline length and alter the extent of twitch potentiation between three ankle positions.
View Article and Find Full Text PDF