Publications by authors named "Samantha J Falk"

Female meiosis provides an opportunity for selfish genetic elements to violate Mendel's law of segregation by increasing the chance of segregating to the egg [1]. Centromeres and other repetitive sequences can drive in meiosis by cheating the segregation process [2], but the underlying mechanisms are unknown. Here, we show that centromeres with more satellite repeats house more nucleosomes that confer centromere identity, containing the histone H3 variant CENP-A, and bias their segregation to the egg relative to centromeres with fewer repeats.

View Article and Find Full Text PDF

The histone H3 variant CENP-A is incorporated into nucleosomes that mark centromere location. We have recently reported that CENP-A nucleosomes, compared with their H3 counterparts, confer an altered nucleosome shape. Here, using a single-molecule fluorescence resonance energy transfer (FRET) approach with recombinant human histones and centromere DNA, we found that the nucleosome shape change directed by CENP-A is dominated by lateral passing of two DNA gyres (gyre sliding).

View Article and Find Full Text PDF
Article Synopsis
  • Structural dynamics of nucleic acids and proteins are crucial for their functions, but current techniques struggle to capture these fast, unsynchronized motions.
  • A new hybrid single molecule approach combines stochastic data analysis with fluorescence correlation, allowing researchers to investigate these rapid structural dynamics more effectively.
  • This study provides the first direct evidence of spontaneous DNA opening at nucleosome termini, which is critical for enabling gene access and suggests that such dynamics are universal, influenced more by salt concentration and protein interactions than by DNA sequence.
View Article and Find Full Text PDF

Inheritance of each chromosome depends upon its centromere. A histone H3 variant, centromere protein A (CENP-A), is essential for epigenetically marking centromere location. We find that CENP-A is quantitatively retained at the centromere upon which it is initially assembled.

View Article and Find Full Text PDF

The centromere is the locus that directs chromosomal inheritance at cell division. While centromeres in diverse eukaryotes are commonly found at sites of repetitive DNA, their location is epigenetically specified. The histone H3 variant CENP-A is the prime candidate for epigenetically marking the centromere, and recent work has uncovered several additional proteins that play key roles in centromere assembly and maintenance.

View Article and Find Full Text PDF

The centromere is the locus that directs chromosomal inheritance at cell division. While centromeres in diverse eukaryotes are commonly found at sites of repetitive DNA, their location is epigenetically specified. The histone H3 variant CENP-A is the prime candidate for epigenetically marking the centromere, and recent work has uncovered several additional proteins that play key roles in centromere assembly and maintenance.

View Article and Find Full Text PDF