Publications by authors named "Samantha J Capon"

Practitioners of environmental water management (EWM) operate within complex social-ecological systems. We sought to better understand this complexity by investigating the management of environmental water for vegetation outcomes. We conducted an online survey to determine practitioners' perspectives on EWM for non-woody vegetation (NWV) in the Murray-Darling Basin, Australia with regards to: i) desirable outcomes and benefits; ii) influencing factors and risks; iii) challenges of monitoring and evaluation, and iv) improving outcomes.

View Article and Find Full Text PDF

How people value rivers, wetlands and floodplains influences their attitudes, beliefs and behaviours towards these ecosystems, and can shape policy and management interventions. Better understanding why people value rivers, wetlands and floodplains and their key ecosystem components, such as vegetation, helps to determine what factors underpin the social legitimacy required for effective management of these systems. This study sought to ascertain perspectives on the value of non-woody vegetation in river-floodplain systems via an online survey.

View Article and Find Full Text PDF

The primary objective of this study was to test the relevance of hydrological classification and class differences to the characteristics of woody riparian vegetation in a subtropical landscape in Queensland, Australia. We followed classification procedures of the environmental flow framework ELOHA - Ecological Limits of Hydrologic Alteration. Riparian surveys at 44 sites distributed across five flow classes recorded 191 woody riparian species and 15, 500 individuals.

View Article and Find Full Text PDF

Intensification of the use of natural resources is a world-wide trend driven by the increasing demand for water, food, fibre, minerals and energy. These demands are the result of a rising world population, increasing wealth and greater global focus on economic growth. Land use intensification, together with climate change, is also driving intensification of the global hydrological cycle.

View Article and Find Full Text PDF

The concepts of ecosystem regime shifts, thresholds and alternative or multiple stable states are used extensively in the ecological and environmental management literature. When applied to aquatic ecosystems, these terms are used inconsistently reflecting differing levels of supporting evidence among ecosystem types. Although many aquatic ecosystems around the world have become degraded, the magnitude and causes of changes, relative to the range of historical variability, are poorly known.

View Article and Find Full Text PDF

Fluvial processes such as flooding and sediment deposition play a crucial role in structuring riparian plant communities. In rivers throughout the world, these processes have been altered by channelization and other anthropogenic stresses. Yet despite increasing awareness of the need to restore natural flow regimes for the preservation of riparian biodiversity, few studies have examined the effects of river restoration on riparian ecosystems.

View Article and Find Full Text PDF